【題目】已知正四面體的棱長(zhǎng)為, 為棱的中點(diǎn),過作其外接球的截面,則截面面積的最小值為__________

【答案】

【解析】將四面體放置于正方體中,可得正方體的外接球就是四面體的外接球,∵正四面體的棱長(zhǎng)為,∴正方體的棱長(zhǎng)為,可得外接球半徑滿足,解得, 為棱的中點(diǎn),過作其外接球的截面,當(dāng)截面到球心的距離最大時(shí),截面圓的面積達(dá)最小值,此時(shí)球心到截面的距離等于正方體棱長(zhǎng)的一半,可得截面圓的半徑為,得到截面圓的面積最小值為

點(diǎn)睛:空間幾何體與球接、切問題的求解方法

(1)求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.

(2)若球面上四點(diǎn)構(gòu)成的三條線段兩兩互相垂直,且,一般把有關(guān)元素“補(bǔ)形”成為一個(gè)球內(nèi)接長(zhǎng)方體,利用求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為ab,c,且(2bc)cos Aacos C

(1)求角A的大小;

(2)若a=3,b=2c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,斜率為的直線與橢圓交于 兩點(diǎn),點(diǎn)在直線的左上方.若,且直線, 分別與軸交于 點(diǎn),求線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).

(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(1+x)+lg(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[( t+1 , ( t]時(shí),求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負(fù)實(shí)數(shù)m,n,使得函數(shù)y=log f(x2)的定義域?yàn)閇m,n],值域?yàn)閇2m,2n],若存在,求出m,n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量在10噸至25噸時(shí),月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元.

(1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)關(guān)系;

(2)已知該產(chǎn)品的銷售價(jià)為每噸1.6萬元,那么月產(chǎn)量為多少時(shí),可獲最大利潤.

(3)當(dāng)月產(chǎn)量為多少噸時(shí),每噸平均成本最低,最低成本是多少萬元?

查看答案和解析>>

同步練習(xí)冊(cè)答案