2.已知實數(shù)x,y滿足1<ax<ay(0≤a≤1),則下列關(guān)系式恒成立的是(  )
A.$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$B.ln(x2+1)>ln(y2+1)C.sinx>sinyD.x2>y2

分析 實數(shù)x,y滿足1<ax<ay(0<a<1),得到y(tǒng)<x<0,對于B.C.D分別舉反例即可否定,對于A:由于y=x2在(-∞,0)上單調(diào)遞減,即可判斷出正誤

解答 解:∵實數(shù)x,y滿足1<ax<ay(0<a<1),
∴y<x<0,
A.若$\frac{1}{{x}^{2}+1}$>$\frac{1}{{y}^{2}+1}$,則等價為x2+1<y2+1,即x2<y2,恒成立
B.若ln(x2+1)>ln(y2+1),則等價為x2>y2成立,當(dāng)x=-1,y=-2,滿足x>y時,但x2>y2,不成立,
C.當(dāng)x=-$\frac{π}{2}$π,y=-π時,滿足x>y,但sinx>siny不成立.
D.當(dāng)x=-1,y=-2,滿足x>y時,但x2>y2,不成立,
故選:A

點評 本題主要考查函數(shù)值的大小比較,利用不等式的性質(zhì)以及函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖的程序框圖,則判斷框可填入和輸出的結(jié)果分別是(  )
A.c>x;a,b,c中最小的B.c=x;a,b,c中最小的
C.c<x;a,b,c中最大的D.c>x;a,b,c中最大的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=(2x-3)n展開式的二項式系數(shù)和為512,且(2x-3)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n
(1)求a2的值;
(2)求a1+a2+a3+…+an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若某公司從5位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用3人,這5人被錄用的機(jī)會均等,則甲、乙同時被錄用的概率為(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為$\stackrel{∧}{y}$=0.85x-85.71,則下列結(jié)論中不正確的是(  )
A.身高x為解釋變量,體重y為預(yù)報變量
B.y與x具有正的線性相關(guān)關(guān)系
C.回歸直線過樣本點的中心($\overline x$,$\overline y$)
D.若該大學(xué)某女生身高為170cm,則她的體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某程序框圖如圖所示,則該程序運(yùn)行后輸出的值是( 。
A.0B.-1C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0),離心率為$\frac{\sqrt{6}}{2}$,則該雙曲線的漸近線方程為( 。
A.$\sqrt{2}x$±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=$\sqrt{x}$},B={x|-1≤2x-1≤3},則A∩B=( 。
A.[0,1]B.[1,2]C.[0,2]D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z=2+$\frac{i}{1+i}$在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案