分析 (1)根據(jù)二次函數(shù)以及一次函數(shù)的性質(zhì)求出函數(shù)的單調(diào)區(qū)間即可;
(2)通過討論a的范圍求出函數(shù)的最小值和最大值即可;
(3)求出f(x)的根,求$|{\frac{1}{x_1}-\frac{1}{x_2}}|$的表達(dá)式,得到其范圍即可.
解答 解:(1)$f(x)={x^2}-x|{x-1}|-3=\left\{\begin{array}{l}2{x^2}-x-3,x≤1\\ x-3,x>1.\end{array}\right.$
x≤1時,函數(shù)f(x)的對稱軸是x=$\frac{1}{4}$,開口向上,
故f(x)在$({-∞,\frac{1}{4}})$上單調(diào)遞減,在$({\frac{1}{4},+∞})$上單調(diào)遞增.
(2)$f(x)={x^2}-x|{x-a}|-3a=\left\{\begin{array}{l}2{x^2}-ax-3a,x≤a\\ ax-3a,x>a.\end{array}\right.$,
當(dāng)0<a≤3時,f(x)=2x2-ax-3a的對稱軸是x=$\frac{a}{4}$<1,
∴f(x)在[0,$\frac{a}{4}$)遞減,在($\frac{a}{4}$,3]遞增,
而f(0)=-3a<f(3)=0,
∴f(x)的最小值$f({\frac{a}{4}})$,最大值f(3);
當(dāng)3<a<6時,對稱軸x=$\frac{a}{4}$,1<$\frac{a}{4}$<3,
故f(x)在[0,$\frac{a}{4}$)遞減,在($\frac{a}{4}$,3]遞增,
∴f(x)的最小$f({\frac{a}{4}})$,最大值f(3),
當(dāng)6≤a<12時,
最小值$f({\frac{a}{4}})$,最大值f(0)
當(dāng)a≥12時,最小值f(3),最大值f(0)
(3)$f(x)={x^2}-x|{x-a}|-3a=\left\{\begin{array}{l}2{x^2}-ax-3a,x≤a\\ ax-3a,x>a.\end{array}\right.$
當(dāng)0<a<3時,令f(x)=0,可得${x_1}=3,{x_2}=\frac{{a-\sqrt{{a^2}+24a}}}{4}$,${x_3}=\frac{{a+\sqrt{{a^2}+24a}}}{4}$
(因為f(a)=a2-3a<0,所以x3>a舍去)
所以$|{\frac{1}{x_1}-\frac{1}{x_2}}|=\frac{1}{3}+\frac{4}{{\sqrt{{a^2}+24a}-a}}=\frac{1}{3}+\frac{{\sqrt{{a^2}+24a}+a}}{6a}=\frac{1}{2}+\frac{1}{6}\sqrt{1+\frac{24}{a}}$,
在0<a<3上是減函數(shù),所以$|{\frac{1}{x_1}-\frac{1}{x_2}}|∈({1,+∞})$.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查二次函數(shù)的性質(zhì)以及分類討論思想,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1)n-1$\frac{1}{{3}^{n}}$ | B. | (-1)n-1$\frac{1}{3n}$ | C. | (-1)n$\frac{1}{{3}^{n}}$ | D. | (-1)n$\frac{1}{3n}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{13}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -i | D. | i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com