7.(1)已知f(x+1)=4x2+2x+1求f(x)的解析式.
(2)若函數(shù)f(x)是二次函數(shù)且滿足f(x+2)-2f(x)=x2-5x,求f(x)的值域.

分析 (1)把f(x+1)化成關(guān)于(x+1)的式子,得出f(x)的解析式;
(2)利用待定系數(shù)法確定函數(shù)關(guān)系式,再由配方求出值域.

解答 解:(1)f(x+1)=4x2+2x+1=4(x+1)2-6(x+1)+3,
∴f(x)=4x2-6x+3;
(2)設(shè)f(x)=ax2+bx+c,
則f(x+2)=a(x+2)2+b(x+2)+c=ax2+(4a+b)x+4a+2b+c,
∴f(x+2)-2f(x)=ax2+(4a+b)x+4a+2b+c-2ax2-2bx-2c=-ax2+(4a-b)x+4a+2b-c,
∴$\left\{\begin{array}{l}{-a=1}\\{4a-b=-5}\\{4a+2b-c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=1}\\{c=-2}\end{array}\right.$,
∴f(x)=-x2+x-2=-(x-$\frac{1}{2}$)2-$\frac{7}{4}$≤-$\frac{7}{4}$,
∴f(x)的值域?yàn)椋?∞,-$\frac{7}{4}$].

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求法,二次函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.通過隨機(jī)詢問100名性別不同的大學(xué)生是否愛好踢毽子,得到如右的列聯(lián)表,經(jīng)計(jì)算,統(tǒng)計(jì)量K2的觀測(cè)值k2≈5.762,參照附表,則所得到的統(tǒng)計(jì)學(xué)結(jié)論為:有( 。┌盐照J(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”.
總計(jì)
愛好104050
不愛好203050
總計(jì)3070100
A.0.25%B.2.5%C.97.5%D.99.75%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示,一個(gè)圓柱形乒乓球筒,高為20厘米,底面半徑為2厘米.球筒的上底和下底分別粘有一個(gè)乒乓球,乒乓球與球筒底面及側(cè)面均相切(球筒和乒乓球厚度均忽略不計(jì)).一個(gè)平面與兩個(gè)乒乓球均相切,且此平面截球筒邊緣所得的圖形為一個(gè)橢圓,則該橢圓的離心率為$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知過點(diǎn)A(0,3)的圓C,圓心在y軸的負(fù)半軸上,且半徑為5.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若過點(diǎn)M(-3,-3)的直線l被圓C的所截得的弦長為$4\sqrt{5}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6,數(shù)列{bn}滿足bn=log3a1+log3a2+…+log3an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an+$\frac{1}{b_n}$(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{m^2}-{y^2}=1$的焦距是4,則該雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{17}}}{17}x$B.$y=±\frac{{\sqrt{5}}}{5}x$C.$y=±\frac{{\sqrt{15}}}{15}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知${({x-m})^7}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}$的展開式中x4的系數(shù)是-35,
(1)求a1+a2+…+a7的值;
(2)求a1+a3+a5+a7的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)$z=\frac{{3-2{i^2}}}{1+i}$的虛部為( 。
A.$-\frac{5}{2}$B.-1C.$\frac{5}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a,b,c分別為A,B,C的對(duì)邊,已知a,b,c成等比數(shù)列,a2-c2=ac+bc,a=3$\sqrt{3}$,則$\frac{b+c}{sinB+sinC}$=( 。
A.12B.6$\sqrt{2}$C.4$\sqrt{3}$D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案