某商場預計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
(1)寫出第個月的需求量的表達式;
(2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數(shù)據:

(1) f(x)= .;(2) .第6個月時最大利潤為3000元

解析試題分析:(1)利用數(shù)列求和的遞推思想可得第x個月的需求量.
(2)由(1)可得第x個月的需求量.根據利潤計算公式求得月利潤.利用分段函數(shù)的范圍求出各段利潤的最大值.最大值的求解是通過求導的知識.本題屬于應用題的問題,閱讀理解題意要細心.其中涉及求和的問題,有涉及第幾個月的問題,及是數(shù)列中的通項與求和關系.另外通過分段的求導在對比出最大值.
試題解析:(1)時,f(x)="p(x)-p(x-1)=" .x=1時p(x)=39也滿足所以f(x)= ..
(2)設該商場第x個月的月利潤為w(元).則①時.w(x)= ..由.得x=6.所以w(x)在[1,6]上遞增,在[6,7)上遞減.所以.②=1000..所以w(x)在[7,8]上遞增,在(8,12]上遞減.所以.綜上.第6個月時最大利潤為3000元.
考點:1.數(shù)列的通項問題.2.導數(shù)求最值問題.3.分段函數(shù)問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(Ⅲ)若,使)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),,(其中),設.
(Ⅰ)當時,試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當時,若存在,使成立,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域為,若關于的不等式的解集為,求的值;
(Ⅱ)當時,為常數(shù),且,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),),
(Ⅰ)證明:當時,對于任意不相等的兩個正實數(shù)、,均有成立;
(Ⅱ)記
(ⅰ)若上單調遞增,求實數(shù)的取值范圍;
(ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求的單調區(qū)間;
(2)若,設是函數(shù)的兩個極值點,且,記分別為的極大值和極小值,令,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)求的單調區(qū)間;
(Ⅱ)若,證明當時,函數(shù)的圖象恒在函數(shù)圖象的上方.

查看答案和解析>>

同步練習冊答案