設(shè)為正實(shí)數(shù),現(xiàn)有下列命題:
①若,則;
②若,則;
③若,則;
④若,則.
其中的真命題有____________.(寫出所有真命題的編號(hào))
①④
解析試題分析:①若a2-b2=1,則a2-1=b2,即(a+1)(a-1)=b2,∵a+1>a-1,∴a-1<b,即a-b<1,①正確;
②若,可取a=7,b=,則a-b>1,∴②錯(cuò)誤;
③若,則可取a=9,b=4,而|a-b|=5>1,∴③錯(cuò)誤;
④由|a3-b3|=1,
若a>b,則a3-b3=1,即a3-1=b3,即(a-1)(a2+1+a)=b3,∵a2+1+a>b2,∴a-1<b,即a-b<1;
若a<b,則b3-a3=1,即b3-1=a3,即(b-1)(b2+1+b)=a3,∵b2+1+b>a2,∴b-1<a,即b-a<1;
∴|a-b|<1∴④正確;
故答案為①④
考點(diǎn):不等式的性質(zhì)
點(diǎn)評(píng):中檔題,可通過舉反例的方法證明某些命題的錯(cuò)誤性。要想說明命題正確,應(yīng)給出嚴(yán)格的證明。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
給出下列四個(gè)命題:
①若,則;
②若,則;
③若正整數(shù)m和n滿足m<n,則;
④若x>0,且x≠1,則.
其中所有真命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若a、b、c、d均為實(shí)數(shù),使不等式都成立的一組值(a、b、c、d)是 。(只要寫出適合條件的一組值即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:“,使等式成立”是真命題.
(1)求實(shí)數(shù)m的取值集合M;
(2)設(shè)不等式的解集為N,若是的必要條件,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com