1.方程3-x=2+3x+1的解為-1.

分析 化簡(jiǎn)方程為3x的二次方程,然后求解即可.

解答 解:3-x=2+3x+1⇒3•(3x2+2•3x-1=0⇒(3•3x-1)(3x+1)=0.
∵3x+1>0,∴3•3x-1=0,解得x=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1的焦點(diǎn)坐標(biāo)為( 。
A.(-4,0)和(4,0)B.(0,-$\sqrt{7}$)和(0,$\sqrt{7}$)C.(-3,0)和(3,0)D.(0,-9)和(0,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知全集U=R,集合A={x|2<x<9},B={x|-2≤x≤5}.
(1)求A∩B;B∪(∁UA);
(2)已知集合C={x|a≤x≤a+2},若C⊆∁UB,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又是減函數(shù)的是(  )
A.f(x)=x3,x∈(-3,3)B.f(x)=tanxC.f(x)=x|x|D.$f(x)=ln{2^{{e^{-x}}-{e^x}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}(x+a)lnx,x>0\\ 2ax+2+a,x≤0\end{array}$,且f'(-1)=f'(1),則當(dāng)x>0時(shí),f(x)的導(dǎo)函數(shù)f'(x)的極小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD.
(1)證明:AC⊥PB;
(2)若PD=3,AD=2,求異面直線PB與AD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=xlnx,則函數(shù)f(x)在點(diǎn)(e,f(e))處的切線方程是y=2x-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知一組數(shù)據(jù)a1,a2,a3,a4,a5的平均數(shù)為8,則另一組數(shù)據(jù)a1+10,a2-10,a3+10,a4-10,a5+10的平均數(shù)為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域?yàn)镽,命題q:函數(shù)g(x)=lg(x2+ax)在[1,+∞)上單調(diào)遞增,若p∧q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案