4.若某公司從四位大學(xué)畢業(yè)生甲、乙、丙、丁中錄用兩人,這四人被錄用的機(jī)會(huì)均等,則甲或乙被錄用的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

分析 由已知得甲或乙被錄用的對(duì)立事件是丙、丁二人都被錄用,由此利用對(duì)立事件概率計(jì)算公式能求出甲或乙被錄用的概率.

解答 解:∵某公司從四位大學(xué)畢業(yè)生甲、乙、丙、丁中錄用兩人,這四人被錄用的機(jī)會(huì)均等,
甲或乙被錄用的對(duì)立事件是丙、丁二人都被錄用,
∴甲或乙被錄用的概率為:
p=1-$\frac{{C}_{2}^{2}}{{C}_{4}^{2}}$=1-$\frac{1}{6}$=$\frac{5}{6}$.
故選:D.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)立事件概率加法定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.小王創(chuàng)建了一個(gè)由他和甲、乙、丙共4人組成的微信群,并向該群發(fā)紅包,每次發(fā)紅包的個(gè)數(shù)為1個(gè)(小王自己不搶),假設(shè)甲、乙、丙3人每次搶得紅包的概率相同.
(Ⅰ)若小王發(fā)2次紅包,求甲恰有1次搶得紅包的概率;
(Ⅱ)若小王發(fā)3次紅包,其中第1,2次,每次發(fā)5元的紅包,第3次發(fā)10元的紅包,記乙搶得所有紅包的錢數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,長(zhǎng)軸長(zhǎng)為4,過橢圓的左頂點(diǎn)A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點(diǎn)P,Q.
(1)若直線l的斜率為$\frac{1}{2}$,求$\frac{AP}{AQ}$的值;
(2)若$\overrightarrow{PQ}$=λ$\overrightarrow{AP}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2016年“五一”期間,高速公路某服務(wù)區(qū)從七座以下小型汽車中,按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽查一輛進(jìn)行詢問調(diào)查.共詢問調(diào)查40名駕駛員.將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),
得到如圖所示的頻率分布直方圖.
(I)求這40輛小型車輛的平均車速(各組數(shù)據(jù)平均值可用其中間數(shù)值代替);
(II)若從車速在[60,70)的車輛中任意抽取2輛,求其中車速在[65,70)的車輛中至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知非零向量$\overrightarrow{AB}$,$\overrightarrow{AC}$滿足($\frac{\overrightarrow{AB}}{|AB|}$+$\frac{\overrightarrow{AC}}{|AC|}$)•$\overrightarrow{BC}$=0,且$\frac{\overrightarrow{AB}}{|AB|}$•$\frac{\overrightarrow{AC}}{|AC|}$=$\frac{1}{2}$,則△ABC的形狀是( 。
A.三邊均不相等的三角形B.直角三角形
C.等腰(非等邊)三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)橢圓E1的長(zhǎng)半軸長(zhǎng)為a1、短半軸長(zhǎng)為b1,橢圓E2的長(zhǎng)半軸長(zhǎng)為a2、短半軸長(zhǎng)為b2,若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{_{1}}{_{2}}$,則我們稱橢圓E1與橢圓E2是相似橢圓.已知橢圓E:$\frac{x^2}{2}$+y2=1,其左頂點(diǎn)為A、右頂點(diǎn)為B.
(1)設(shè)橢圓E與橢圓F:$\frac{x^2}{s}$+$\frac{y^2}{2}$=1是“相似橢圓”,求常數(shù)s的值;
(2)設(shè)橢圓G:$\frac{x^2}{2}$+y2=λ(0<λ<1),過A作斜率為k1的直線l1與橢圓G僅有一個(gè)公共點(diǎn),過橢圓E的上頂點(diǎn)為D作斜率為k2的直線l2與橢圓G僅有一個(gè)公共點(diǎn),當(dāng)λ為何值時(shí)|k1|+|k2|取得最小值,并求其最小值;
(3)已知橢圓E與橢圓H:$\frac{x^2}{2}$+$\frac{y^2}{t}$=1(t>2)是相似橢圓.橢圓H上異于A、B的任意一點(diǎn)C(x0,y0),求證:△ABC的垂心M在橢圓E上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某人玩擲骰子移動(dòng)棋子的游戲,棋盤分為A,B兩方,開始時(shí)棋子放在A方,根據(jù)下列①、②、③的規(guī)定移動(dòng)棋子:①骰子出現(xiàn)1點(diǎn)時(shí),不能移動(dòng)棋子;②出現(xiàn)2、3、4、5點(diǎn)時(shí),把棋子移向?qū)Ψ剑虎鄢霈F(xiàn)6點(diǎn)時(shí),若棋子在A方就不動(dòng),若棋子在B方就移至A方.
(1)將骰子連擲2次,求擲第一次后棋子仍在A方而擲第二次后棋子在B方的概率;
(2)若將骰子連擲3次,3次中棋子移動(dòng)的次數(shù)記為ξ,求隨機(jī)變量ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)A(-1,1)及圓C:(x-3)2+(y-4)2=1,求過A的圓C的兩切線的切點(diǎn)連線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C的所對(duì)邊分別為a,b,c.已知a2+b2+5abcosC=0,sin2C=$\frac{7}{2}$sinAsinB.
(Ⅰ)求角C的大小;
(Ⅱ)若△ABC的面積為$\frac{\sqrt{3}}{2}$,求sinA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案