13.已知點A(-1,1)及圓C:(x-3)2+(y-4)2=1,求過A的圓C的兩切線的切點連線所在直線的方程.

分析 由題意求出以A,C為直徑的圓的方程,化為一般式,再把已知圓的方程化為一般式,兩圓方程作差可得過A的圓C的兩切線的切點連線所在直線的方程.

解答 解:如圖,
由圓C:(x-3)2+(y-4)2=1,得圓心C(3,4),圓的半徑為1,
又A(-1,1),則AC中點坐標(biāo)為(1,$\frac{5}{2}$),
又|AC|=$\sqrt{(3+1)^{2}+(4-1)^{2}}=5$,
∴以AC為直徑的圓的方程為:$(x-1)^{2}+(y-\frac{5}{2})^{2}=\frac{25}{4}$,
整理得:x2+y2-2x-5y+1=0.①
化圓C:(x-3)2+(y-4)2=1為x2+y2-6x-8y+24=0.②
①-②得過A的圓C的兩切線的切點連線所在直線的方程為4x+3y-23=0.

點評 本題考查圓的切線方程,訓(xùn)練了圓系方程的運用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某空間幾何體的三視圖如圖所示,則該幾何體的外接球表面積為9π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若某公司從四位大學(xué)畢業(yè)生甲、乙、丙、丁中錄用兩人,這四人被錄用的機(jī)會均等,則甲或乙被錄用的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)離散隨機(jī)變量X的概率函數(shù)為P(X=k)=$\frac{5a}{{2}^{k}}$,k=1,2,…則常數(shù)a=( 。
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,虛軸的一個端點為A,若AF與雙曲線C的一條漸近線垂直,則雙曲線的離心率為( 。
A.$\sqrt{2}$+1B.$\sqrt{5}$C.$\frac{1+\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x3+ax2+(a+1)x是奇函數(shù),則曲線y=f(x)在x=0處的切線方程為( 。
A.y=xB.y=x+1C.y=1D.y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題“p:?x0∈R,|x0+1|+|x0-2|≤a”是真命題,則實數(shù)a的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.9粒種子分種在3個坑中,每坑3粒,每粒種子發(fā)芽的概率為0.5.若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑內(nèi)不需要補(bǔ)種;若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補(bǔ)種.
(1)求單個坑不需要補(bǔ)種的概率;
(2)用ξ表示需要補(bǔ)種的坑數(shù),求ξ的分布列;
(3)假定每個坑至多補(bǔ)種一次,每補(bǔ)種1個坑需10元,用X表示補(bǔ)種的費用,求X的期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊經(jīng)過點(-3,4),則sin2α的值為(  )
A.-$\frac{7}{25}$B.-$\frac{18}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

同步練習(xí)冊答案