【題目】某村為了脫貧致富,引進(jìn)了兩種麻鴨品種,一種是旱養(yǎng)培育的品種,另一種是水養(yǎng)培育的品種.為了了解養(yǎng)殖兩種麻鴨的經(jīng)濟(jì)效果情況,從中隨機(jī)抽取500只麻鴨統(tǒng)計(jì)了它們一個(gè)季度的產(chǎn)蛋量(單位:個(gè)),制成了如圖的頻率分布直方圖,且已知麻鴨的產(chǎn)蛋量在的頻率為0.66.
(1)求,的值;
(2)已知本次產(chǎn)蛋量近似服從(其中近似為樣本平均數(shù),似為樣本方差).若本村約有10000只麻鴨,試估計(jì)產(chǎn)蛋量在110~120的麻鴨數(shù)量(以各組區(qū)間的中點(diǎn)值代表該組的取值).
(3)若以正常產(chǎn)蛋90個(gè)為標(biāo)準(zhǔn),大于90個(gè)認(rèn)為是良種,小于90個(gè)認(rèn)為是次種.根據(jù)統(tǒng)計(jì)得出兩種培育方法的列聯(lián)表如下,請(qǐng)完成表格中的統(tǒng)計(jì)數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為產(chǎn)蛋量與培育方法有關(guān).
良種 | 次種 | 總計(jì) | |
旱養(yǎng)培育 | 160 | 260 | |
水養(yǎng)培育 | 60 | ||
總計(jì) | 340 | 500 |
附:,則,,.
,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1),(2)1359只(3)見解析,有99.5%的把握認(rèn)為產(chǎn)蛋量與培育方法有關(guān).
【解析】
(1)利用頻率分布直方圖求出對(duì)應(yīng)的頻率值,進(jìn)而求得的值;
(2)根據(jù)題意計(jì)算的值,利用正態(tài)分布的性質(zhì),即可求解,進(jìn)而求得對(duì)應(yīng)的數(shù)值;
(3)根據(jù)題意補(bǔ)充的列聯(lián)表,計(jì)算的值,對(duì)照臨界值表,即可得到結(jié)論.
(1)由頻率分布直方圖,可得產(chǎn)蛋量在的頻率為0.66,可得產(chǎn)蛋量在的麻鴨數(shù)量為(只).
所以產(chǎn)蛋量在的麻鴨數(shù)量為(只)
產(chǎn)蛋量在的麻鴨數(shù)量為(只)
產(chǎn)蛋量在的麻鴨數(shù)量為(只)
所以,.
(2)由平均數(shù)的計(jì)算公式,可得:
,即,
又由
,
所以10000只麻鴨中估計(jì)產(chǎn)蛋量在110~120的麻鴨數(shù)量為(只)
(3)根據(jù)題意,得到列聯(lián)表:
良種 | 次種 | 總計(jì) | |
旱養(yǎng)培育 | 100 | 160 | 260 |
水養(yǎng)培育 | 60 | 180 | 240 |
總計(jì) | 160 | 340 | 500 |
所以,
所以有99.5%的把握認(rèn)為產(chǎn)蛋量與培育方法有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),且).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)P的極坐標(biāo)為,Q為曲線上的動(dòng)點(diǎn),求的中點(diǎn)M到曲線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在多面體中,平面,,點(diǎn)在上,點(diǎn)是的中點(diǎn),且,且.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,是等邊三角形,,,為三棱錐外一點(diǎn),且為等邊三角形.
證明:;
若平面平面,平面與平面所成銳二面角的余弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的右焦點(diǎn)為F到直線的距離為,拋物線的焦點(diǎn)與橢圓E的焦點(diǎn)F重合,過F作與x軸垂直的直線交橢圓于S,T兩點(diǎn),交拋物線于C,D兩點(diǎn),且.
(1)求橢圓E及拋物線G的方程;
(2)過點(diǎn)F且斜率為k的直線l交橢圓于A,B點(diǎn),交拋物線于M,N兩點(diǎn),如圖所示,請(qǐng)問是否存在實(shí)常數(shù),使為常數(shù),若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年3月22日是第二十八屆“世界水日”3月22-28日是第三十三屆“中國(guó)水周”,主題為“堅(jiān)持節(jié)水優(yōu)先,建設(shè)幸福河湖”,效仿階梯電價(jià),某市準(zhǔn)備實(shí)施階梯水價(jià).階梯水價(jià)原則上以一套住宅(一套住宅為一戶)的月用水量為基準(zhǔn),具體劃分階梯如下:
梯類 | 第一階梯 | 第二階梯 | 第三階梯 |
月用水量范圍(立方米) |
從本市居民用戶中隨機(jī)抽取10戶,并統(tǒng)計(jì)了在同一個(gè)月份的月用水量,得到如圖所示的莖葉圖
(1)若從這10戶中任意抽取三戶,求取到第二階梯用戶數(shù)的分布列和數(shù)學(xué)期望;
(2)用以上樣本估計(jì)全市的居民用水情況,現(xiàn)從全市隨機(jī)抽取10戶,則抽到多少戶為第二階梯用戶的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)在的延長(zhǎng)線上,且,點(diǎn)的軌跡為.
(1)求直線及曲線的極坐標(biāo)方程;
(2)若射線與直線交于點(diǎn),與曲線交于點(diǎn)(與原點(diǎn)不重合),求的最大值.
查看答案和解析>>