【題目】如圖所示,在多面體中,平面,,點(diǎn)在上,點(diǎn)是的中點(diǎn),且,且.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)見解析(Ⅱ)
【解析】
(Ⅰ)取的中點(diǎn)為,連接、,根據(jù)等比三角形的性質(zhì)可得,由線面垂直的性質(zhì)定理可得,進(jìn)而證出,利用線面垂直的判定定理可得平面,再由題意可得,,,可得,即得證.
(Ⅱ)以點(diǎn)為坐標(biāo)原點(diǎn),以以及的垂線,為軸,建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量以及平面的一個(gè)法向量,利用空間向量的數(shù)量積即可求出二面角.
(Ⅰ)如圖,取的中點(diǎn)為,連接、.
在中,因?yàn)?/span>,所以.
因?yàn)?/span>平面,平面,所以.
而,所以.
由于,所以平面.
點(diǎn)、是邊、的中點(diǎn),所以,.
又因?yàn)?/span>,,所以∥,
因此四邊形是平行四邊形,,故平面.
(Ⅱ)如圖,以點(diǎn)為坐標(biāo)原點(diǎn),分別以以及的垂線,為軸,
建立空間直角坐標(biāo)系.
則,,,,.
于是,.
設(shè)是平面的一個(gè)法向量,
則由,,得,
取.
同理可求出平面的一個(gè)法向量.
于是.
故二面角的余弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中醫(yī)藥研究所研制出一種新型抗癌藥物,服用后需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)次;(2)混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這份的血液全為陰性,因而這份血液樣本只需檢驗(yàn)一次就夠了;若檢驗(yàn)結(jié)果為陽性,為了明確這份血液究竟哪份為陽性,就需要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為次假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果總陽性還是陰性都是相互獨(dú)立的,且每份樣本是陽性的概率為.
(1)假設(shè)有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗(yàn)的方式,求恰好經(jīng)過兩次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.
(2)現(xiàn)取其中的份血液樣本,記采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)為;采用混合檢驗(yàn)的方式,樣本簡(jiǎn)要檢驗(yàn)的總次數(shù)為;
(。┤,試運(yùn)用概率與統(tǒng)計(jì)的知識(shí),求關(guān)于的函數(shù)關(guān)系,
(ⅱ)若,采用混合檢驗(yàn)的方式需要檢驗(yàn)的總次數(shù)的期望比逐份檢驗(yàn)的總次數(shù)的期望少,求的最大值(,,,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,武漢市爆發(fā)了新型冠狀病毒肺炎疫情,在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)下,全國人民團(tuán)結(jié)一心,眾志成城,共同抗擊疫情.某中學(xué)寒假開學(xué)后,為了普及傳染病知識(shí),增強(qiáng)學(xué)生的防范意識(shí),提高自身保護(hù)能力,校委會(huì)在全校學(xué)生范圍內(nèi),組織了一次傳染病及個(gè)人衛(wèi)生相關(guān)知識(shí)有獎(jiǎng)競(jìng)賽(滿分100分),競(jìng)賽獎(jiǎng)勵(lì)規(guī)則如下,得分在內(nèi)的學(xué)生獲三等獎(jiǎng),得分在內(nèi)的學(xué)生獲二等獎(jiǎng),得分在內(nèi)的學(xué)生獲一等獎(jiǎng),其他學(xué)生不得獎(jiǎng).教務(wù)處為了解學(xué)生對(duì)相關(guān)知識(shí)的掌握情況,隨機(jī)抽取了100名學(xué)生的競(jìng)賽成績(jī),并以此為樣本繪制了如下樣本頻率分布直方圖.
(1)現(xiàn)從該樣本中隨機(jī)抽取兩名學(xué)生的競(jìng)賽成績(jī),求這兩名學(xué)生中恰有一名學(xué)生獲獎(jiǎng)的概率;
(2)若該校所有參賽學(xué)生的成績(jī)近似服從正態(tài)分布,其中為樣本平均數(shù)的估計(jì)值,利用所得正態(tài)分布模型解決以下問題:
(i)若該校共有10000名學(xué)生參加了競(jìng)賽,試估計(jì)參賽學(xué)生中成績(jī)超過79分的學(xué)生數(shù)(結(jié)果四舍五入到整數(shù));
(ii)若從所有參賽學(xué)生中(參賽學(xué)生數(shù)大于10000)隨機(jī)抽取3名學(xué)生進(jìn)行座談,設(shè)其中競(jìng)賽成績(jī)?cè)?/span>64分以上的學(xué)生數(shù)為,求隨機(jī)變量的分布列和均值.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱,中,側(cè)面是菱形,是中點(diǎn),平面,平面與棱交于點(diǎn),.
(1)求證:四邊形為平行四邊形;
(2)若與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
⑴當(dāng)時(shí),求函數(shù)的極值;
⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,,.
(1)求證:平面;
(2)求異面直線與所成角的大。
(3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村為了脫貧致富,引進(jìn)了兩種麻鴨品種,一種是旱養(yǎng)培育的品種,另一種是水養(yǎng)培育的品種.為了了解養(yǎng)殖兩種麻鴨的經(jīng)濟(jì)效果情況,從中隨機(jī)抽取500只麻鴨統(tǒng)計(jì)了它們一個(gè)季度的產(chǎn)蛋量(單位:個(gè)),制成了如圖的頻率分布直方圖,且已知麻鴨的產(chǎn)蛋量在的頻率為0.66.
(1)求,的值;
(2)已知本次產(chǎn)蛋量近似服從(其中近似為樣本平均數(shù),似為樣本方差).若本村約有10000只麻鴨,試估計(jì)產(chǎn)蛋量在110~120的麻鴨數(shù)量(以各組區(qū)間的中點(diǎn)值代表該組的取值).
(3)若以正常產(chǎn)蛋90個(gè)為標(biāo)準(zhǔn),大于90個(gè)認(rèn)為是良種,小于90個(gè)認(rèn)為是次種.根據(jù)統(tǒng)計(jì)得出兩種培育方法的列聯(lián)表如下,請(qǐng)完成表格中的統(tǒng)計(jì)數(shù)據(jù),并判斷是否有99.5%的把握認(rèn)為產(chǎn)蛋量與培育方法有關(guān).
良種 | 次種 | 總計(jì) | |
旱養(yǎng)培育 | 160 | 260 | |
水養(yǎng)培育 | 60 | ||
總計(jì) | 340 | 500 |
附:,則,,.
,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,,分別從,中各取2個(gè)不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個(gè)數(shù)是________(用數(shù)字作答).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com