【題目】已知集合,,分別從,中各取2個(gè)不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個(gè)數(shù)是________(用數(shù)字作答).
【答案】32
【解析】
首先先從兩個(gè)集合分別選出兩個(gè)元素,這四個(gè)數(shù)加起來能被3整除,然后再排列4為偶數(shù),得到最后結(jié)果.
首先先從兩個(gè)集合中選取元素,分別選取1,3,0,2,1,5,2,4,3,5,0,4共3種組合情況,
當(dāng)四個(gè)數(shù)是1,3,0,2時(shí),能組成的偶數(shù):個(gè)位是0時(shí),共有種,個(gè)位是2時(shí),有種,有種,
當(dāng)四個(gè)數(shù)是1,5,2,4時(shí),能組成的偶數(shù)有種,
當(dāng)四個(gè)數(shù)是3,5,0,4時(shí),能組成的偶數(shù):個(gè)位是0時(shí),共有種,個(gè)位是4時(shí),有種,有種,
綜上可知能組成不同的能被3整除的四位偶數(shù)的個(gè)數(shù)是10+12+10=32種.
故答案為:32
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級(jí)過濾,使用壽命為十年.如圖所示,兩個(gè)一級(jí)過濾器采用并聯(lián)安裝,二級(jí)過濾器與三級(jí)過濾器為串聯(lián)安裝。
其中每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn)。在使用過程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立),三級(jí)濾芯無需更換,若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.若客戶在使用過程中單獨(dú)購買濾芯,則一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元,F(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購濾芯的數(shù)量,為此參考了根據(jù)套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖是根據(jù)個(gè)一級(jí)過濾器更換的濾芯個(gè)數(shù)制成的柱狀圖,表是根據(jù)個(gè)二級(jí)過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表.
二級(jí)濾芯更換頻數(shù)分布表
二級(jí)濾芯更換的個(gè)數(shù) | ||
頻數(shù) |
以個(gè)一級(jí)過濾器更換濾芯的頻率代替個(gè)一級(jí)過濾器更換濾芯發(fā)生的概率,以個(gè)二級(jí)過濾器更換濾芯的頻率代替個(gè)二級(jí)過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記,分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定,的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓C滿足:圓心在軸上,且與圓相外切.設(shè)圓C與軸的交點(diǎn)為M,N,若圓心C在軸上運(yùn)動(dòng)時(shí),在軸正半軸上總存在定點(diǎn),使得為定值,則點(diǎn)的縱坐標(biāo)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第18屆國際籃聯(lián)籃球世界杯(世界男子籃球錦標(biāo)賽更名為籃球世界杯后的第二屆世界杯)于2019年8月31日至9月15日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.中國隊(duì)12名球員在第一場(chǎng)和第二場(chǎng)得分的莖葉圖如圖所示,則下列說法正確的是( )
A.第一場(chǎng)得分的中位數(shù)為B.第二場(chǎng)得分的平均數(shù)為
C.第一場(chǎng)得分的極差大于第二場(chǎng)得分的極差D.第一場(chǎng)與第二場(chǎng)得分的眾數(shù)相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,且
f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)為的中點(diǎn),點(diǎn)為線段垂直平分線上的一點(diǎn),且,固定邊,在平面內(nèi)移動(dòng)頂點(diǎn),使得的內(nèi)切圓始終與切于線段的中點(diǎn),且、在直線的同側(cè),在移動(dòng)過程中,當(dāng)取得最小值時(shí),的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),等腰梯形,,,,、分別是的兩個(gè)三等分點(diǎn).若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn),如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-1,(a∈R),若對(duì)任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)在區(qū)間上的值域?yàn)?/span>,則稱區(qū)間是函數(shù)的“完美區(qū)間”,另外,定義區(qū)間的“復(fù)區(qū)間長(zhǎng)度”為,已知函數(shù),則( )
A.是的一個(gè)“完美區(qū)間”
B.是的一個(gè)“完美區(qū)間”
C.的所有“完美區(qū)間”的“復(fù)區(qū)間長(zhǎng)度”的和為
D.的所有“完美區(qū)間”的“復(fù)區(qū)間長(zhǎng)度”的和為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com