【題目】如圖,在三棱錐中,⊥底面,是的中點.
已知,,,.求:
(1)三棱錐PABC的體積;
(2)異面直線BC與AD所成角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知為橢圓的一個焦點,過原點的直線與橢圓交于兩點,且, 的面積為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若,過點且不與坐標軸垂直的直線交橢圓于兩點,線段的垂直平分線與軸交于點,求點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:
網(wǎng)購金額 (單位:千元) | 頻數(shù) | 頻率 |
3 | ||
9 | ||
15 | ||
18 | ||
合計 | 60 |
若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.
(1)確定,,,的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4﹣1幾何證明選講】
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,且BCAE=DCAF,B、E、F、C四點共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D( ,﹣ )作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的首項,前項和為,.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前n項和Tn,并證明:1≤Tn<.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二階矩陣M有特征值λ=8及對應的一個特征向量 =[ ],并且矩陣M對應的變換將點(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】閱讀如下程序框圖,如果輸出i=5,那么在空白矩形框中應填入的語句為( )
A.S=2*i﹣2
B.S=2*i﹣1
C.S=2*I
D.S=2*i+4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過,且橢圓的離心率為.
(1)求橢圓的方程;
(2)設斜率存在的直線與橢圓交于兩點,為坐標原點,,且與圓心為的定圓相切.直線:()與圓交于兩點,.求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com