【題目】已知二階矩陣M有特征值λ=8及對(duì)應(yīng)的一個(gè)特征向量 =[ ],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值.

【答案】
(1)解:設(shè)矩陣A= ,這里a,b,c,d∈R,

=8 =

,

由于矩陣M對(duì)應(yīng)的變換將點(diǎn)(﹣1,2)換成(﹣2,4).

=

聯(lián)立以上兩方程組解得a=6,b=2,c=4,d=4,故M=


(2)解:由(1)知,矩陣M的特征多項(xiàng)式為f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,

故矩陣M的另一個(gè)特征值為2


【解析】(1)先設(shè)矩陣A= ,這里a,b,c,d∈R,由二階矩陣M有特征值λ=8及對(duì)應(yīng)的一個(gè)特征向量e1及矩陣M對(duì)應(yīng)的變換將點(diǎn)(﹣1,2)換成(﹣2,4).得到關(guān)于a,b,c,d的方程組,即可求得矩陣M;(2)由(1)知,矩陣M的特征多項(xiàng)式為f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,從而求得另一個(gè)特征值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】設(shè)球半徑為R,圓柱的體積為時(shí)圓柱的體積最大為 ,因此材料利用率= ,選C.

點(diǎn)睛:空間幾何體與球接、切問題的求解方法

求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.

型】單選題
結(jié)束】
12

【題目】已知拋物線 在點(diǎn)處的切線與曲線 相切,若動(dòng)直線分別與曲線、相交于兩點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長(zhǎng);
(2)求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,⊥底面,的中點(diǎn).

已知,,.求:

(1)三棱錐PABC的體積;

(2)異面直線BCAD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知n為正整數(shù),數(shù)列{an}滿足an>0,4(n+1)an2﹣nan+12=0,設(shè)數(shù)列{bn}滿足bn=
(1)求證:數(shù)列{ }為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實(shí)數(shù)t的值:
(3)若數(shù)列{bn}是等差數(shù)列,前n項(xiàng)和為Sn , 對(duì)任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,且,數(shù)列滿足,,其前9項(xiàng)和為63.

(1)求數(shù)列的通項(xiàng)公式;

(2)令,數(shù)列的前n項(xiàng)和為,若對(duì)任意正整數(shù)n,都有,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正四棱錐P﹣ABCD中,PA=AB=2,點(diǎn)M,N分別在PA,BD上,且 =
(1)求異面直線MN與PC所成角的大;
(2)求二面角N﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2sin(2x+ ),將f(x)圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的一半之后成為函數(shù)y=g(x),則g(x)的圖象的一條對(duì)稱軸方程為(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱ABCD﹣A1B1C1D1的底面是邊長(zhǎng)為2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,設(shè)E為CD中點(diǎn)

(1)求證:D1E⊥平面BEC1
(2)點(diǎn)F在線段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成銳角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案