9.△ABC中,已知A(-1,2),B(3,4),C(0,3),則AB邊上的高CH所在直線的方程為2x+y-3=0.

分析 利用斜率計算公式可得:kAB,利用相互垂直的直線斜率之間的關(guān)系可得kCH.再利用點斜式即可得出.

解答 解:kAB=$\frac{2-4}{-1-3}$=$\frac{1}{2}$,∴kCH=-2.
∴AB邊上的高CH所在直線的方程為:y=-2x+3.
故答案為:2x+y-3=0.

點評 本題考查了相互垂直的直線斜率之間的關(guān)系、點斜式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)z滿足z•(2-i)=3-4i(其中i為虛數(shù)單位),則復(fù)數(shù)|$\frac{z}{i}$|=(  )
A.$\frac{2\sqrt{5}}{3}$B.2C.$\frac{5\sqrt{5}}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=sin3x在($\frac{π}{3}$,0)處的切線斜率為( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.關(guān)于x的不等式(ax-1)(x+2a-1)>0的解集中恰含有3個整數(shù),則實數(shù)a的取值集合是$\left\{{-\frac{1}{2},-1}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn,且滿足Sn=n2-4n,數(shù)列{bn}中,b1=$\frac{a_2}{{3+{a_3}}}$對任意正整數(shù)$n≥2,{b_{n+1}}+{b_n}={({\frac{1}{3}})^n}$.
(1)求數(shù)列{an}的通項公式;
(2)是否存在實數(shù)μ,使得數(shù)列{3n•bn+μ}是等比數(shù)列?若存在,請求出實數(shù)μ及公比q的值,若不存在,請說明理由;
(3)求證:$\frac{1}{4}≤{b_1}+{b_2}+…+{b_n}<\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在數(shù)列{an}中,a1+2a2++22a3+…2n-1an=(n•2n-2n+1)t對任意n∈N*成立,其中常數(shù)t>0.若關(guān)于n的不等式$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+…+$\frac{1}{{a}_{{2}^{n}}}$>$\frac{m}{{a}_{1}}$的解集為{n|n≥4,n∈N*},則實數(shù)m的取值范圍是[$\frac{7}{8}$,$\frac{15}{16}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.時鐘的時針走過了30分鐘,則分針轉(zhuǎn)過的角為-180°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},則M∩(∁UN)=( 。
A.{1}B.{1,4}C.{1,4,5}D.{1,2,4,5}

查看答案和解析>>

同步練習(xí)冊答案