【題目】下列命題中正確的是( 。

A. 如果兩條直線都平行于同一個(gè)平面,那么這兩條直線互相平行

B. 過一條直線有且只有一個(gè)平面與已知平面垂直

C. 如果一條直線平行于一個(gè)平面內(nèi)的一條直線,那么這條直線平行于這個(gè)平面

D. 如果兩條直線都垂直于同一平面,那么這兩條直線共面

【答案】D

【解析】

利用定理及特例法逐一判斷即可。

解:如果兩條直線都平行于同一個(gè)平面,那么這兩條直線相交、平行或異面,故A不正確;

過一條直線有且只有一個(gè)平面與已知平面垂直,不正確.

反例:如果該直線本身就垂直于已知平面的話,

那么可以找到無數(shù)個(gè)平面與已知平面垂直,故B不正確;

如果這兩條直線都在平面內(nèi)且平行,那么這直線不平行于這個(gè)平面,故C不正確;

如果兩條直線都垂直于同一平面,則這兩條直線平行,

所以這兩條直線共面,故D正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=﹣x2的單調(diào)遞增區(qū)間為( )
A.(﹣∞,0]
B.[0,+∞)
C.(0,+∞)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息,設(shè)定原信息為a0a1a2 , ai∈{0,1}(i=0,1,2),傳輸信息為h0a0a1a2h1 , 其中h0=a0⊕a1 , h1=h0⊕a2 . ⊕運(yùn)算規(guī)則為:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是(
A.10111
B.01100
C.11010
D.00011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用秦九韶算法求多項(xiàng)式f(x)=2x5+4x4-2x3+8x2+7x+4當(dāng)x=3的值,寫出每一步的計(jì)算表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)(1,0)…求證:這個(gè)二次函數(shù)的圖象關(guān)于直線x=2對(duì)稱。根據(jù)現(xiàn)有信息,題中的二次函數(shù)不一定具有的性質(zhì)是( )

A. 在x軸上截得的線段的長(zhǎng)度是2

B. 與y軸交于點(diǎn)(0,3)

C. 頂點(diǎn)是(2,2)

D. 過點(diǎn)(3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在英語中不同字母出現(xiàn)的頻率彼此不同且相差很大,但同一個(gè)字母的使用頻率相當(dāng)穩(wěn)定,有人統(tǒng)計(jì)了40多萬個(gè)單詞中5個(gè)元音字母的使用頻率,結(jié)果如下表所示:

元音字母

A

E

I

O

U

頻率

7.88%

12.68%

7.07%

7.76%

2.80%

1)從一本英文(小說類)書里隨機(jī)選一頁,統(tǒng)計(jì)在這一頁里元音字母出現(xiàn)的頻率;

2)將你統(tǒng)計(jì)得出的頻率與上表中的頻率進(jìn)行比較,結(jié)果是否比較接近?你認(rèn)為存在差異的原因是什么.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:在D內(nèi)單調(diào)遞增或單調(diào)遞減;存在區(qū)間,使上的值域?yàn)?/span>,則把叫閉函數(shù)。

(1)求閉函數(shù)符合條件的區(qū)間

(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;

(3)已知是正整數(shù),且定義在的函數(shù)是閉函數(shù)求正整數(shù)的最小值,及此時(shí)實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單調(diào)遞增數(shù)列中,,且成等差數(shù)列,成等比數(shù)列,

)(求證:數(shù)列為等差數(shù)列;

求數(shù)列的通項(xiàng)公式

設(shè)數(shù)列的前項(xiàng)和為,證明:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),其離心率為。

)求橢圓的方程;

)設(shè)橢圓的右頂點(diǎn)為,直線于兩點(diǎn)(異于點(diǎn)),若上,且,證明直線過定點(diǎn)。

查看答案和解析>>

同步練習(xí)冊(cè)答案