【題目】已知橢圓的兩個(gè)焦點(diǎn),,且橢圓過點(diǎn),,且是橢圓上位于第一象限的點(diǎn),且的面積.

1)求點(diǎn)的坐標(biāo);

2)過點(diǎn)的直線與橢圓相交于點(diǎn),直線,軸相交于,兩點(diǎn),點(diǎn),則是否為定值,如果是定值,求出這個(gè)定值,如果不是請(qǐng)說(shuō)明理由.

【答案】1;(2)詳見解析.

【解析】

試題(1)通過已知條件首先求得橢圓的標(biāo)準(zhǔn)方程,再結(jié)合三角形的面積計(jì)算公式,即可求得的坐標(biāo);(2)將直線的方程設(shè)出,聯(lián)立直線方程與橢圓方程,通過計(jì)算說(shuō)明是否為定值即可.

試題解析:(1橢圓過點(diǎn),,

,計(jì)算得,,橢圓的方程為.

的面積,,代入橢圓方程.

,;(2)法一:設(shè)直線的方程為,,,

直線的方程為,可得,即,

直線的方程為,可得,即.

聯(lián)立,消去,整理,得.

,可得,,,

為定值,且.

法二:設(shè),,,直線,的斜率分別為,,,由,得,,可得,

,

,令,得,即,

同理得,即,則

為定值,該定值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面底面,底面為直角梯形,,,,,的中點(diǎn),的中點(diǎn)。

(1)求證:∥平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在以為焦點(diǎn)的雙曲線上,過軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為維護(hù)交通秩序,防范電動(dòng)自行車被盜,天津市公安局決定,開展二輪電動(dòng)自行車免費(fèi)登記、上牌照工作.電動(dòng)自行車牌照分免費(fèi)和收費(fèi)(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個(gè)不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進(jìn)行電話訪談.

(Ⅰ)應(yīng)從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?

(Ⅱ)設(shè)從甲小區(qū)抽取的居民為,丙小區(qū)抽取的居民為.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機(jī)抽取2人接受問卷調(diào)查.

(。┰囉盟o字母列舉出所有可能的抽取結(jié)果;

(ⅱ)設(shè)為事件“抽取的2人來(lái)自不同的小區(qū)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)(其中),若函數(shù)的圖象與軸的任意兩個(gè)相鄰交點(diǎn)間的距離為,且函數(shù)的圖象過點(diǎn)

1)求的解析式;

2)求的單調(diào)增區(qū)間:

3)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)甲、乙兩班共有25名學(xué)生報(bào)名參加了一項(xiàng) 測(cè)試.這25位學(xué)生的考分編成的莖葉圖,其中有一個(gè)數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來(lái)表示),但他清楚地記得兩班學(xué)生成績(jī)的中位數(shù)相同.

)求這兩個(gè)班學(xué)生成績(jī)的中位數(shù)及x的值;

)如果將這些成績(jī)分為優(yōu)秀(得分在175分 以上,包括175分)和過關(guān),若學(xué)校再?gòu)倪@兩個(gè)班獲得優(yōu)秀成績(jī)的考生中選出3名代表學(xué)校參加比賽,求這3人中甲班至多有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將高二(1)班的四個(gè)同學(xué)分到語(yǔ)文、數(shù)學(xué)、英語(yǔ)三個(gè)興趣小組,每個(gè)興趣小組至少有一名同學(xué)的分配方法有多少種?下列結(jié)論正確的有(

A.B.

C.D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖放置的邊長(zhǎng)為1的正方形沿軸滾動(dòng),點(diǎn)恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)的軌跡方程是,則對(duì)函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對(duì)任意的都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).

(1)求證:平面;

(2)當(dāng)側(cè)面是正方形,且時(shí),

(。┣蠖娼的大。

(ⅱ)在線段上是否存在點(diǎn),使得?若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案