【題目】如圖,三棱柱的側(cè)面是平行四邊形,,平面平面,且分別是的中點(diǎn).
(1)求證:平面;
(2)當(dāng)側(cè)面是正方形,且時(shí),
(ⅰ)求二面角的大;
(ⅱ)在線段上是否存在點(diǎn),使得?若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析(2)(ⅰ)(ⅱ)點(diǎn)在點(diǎn)處時(shí),有
【解析】
(1)取中點(diǎn),證明四邊形是平行四邊形,可得從而得證;
(2)(。┫茸C明平面以為原點(diǎn)建立空間直角坐標(biāo)系,求出平面與平面的法向量,即可得到二面角的大小;
(ⅱ)假設(shè)在線段上存在點(diǎn),使得. 設(shè),則.
利用垂直關(guān)系,建立的方程,解之即可.
證明:(1)取中點(diǎn),連,連.
在△中,因?yàn)?/span>分別是中點(diǎn),
所以,且.
在平行四邊形中,因?yàn)?/span>是的中點(diǎn),
所以,且.
所以,且.
所以四邊形是平行四邊形.
所以.
又因?yàn)?/span>平面,平面,
所以平面.
(2)因?yàn)閭?cè)面是正方形,所以.
又因?yàn)槠矫?/span>平面,且平面平面
所以平面.所以.
又因?yàn)?/span>,以為原點(diǎn)建立空間直角坐標(biāo)系,如圖所示.
設(shè),則,
.
(ⅰ)設(shè)平面的一個(gè)法向量為.
由得即令,所以.
又因?yàn)?/span>平面,所以是平面的一個(gè)法向量.
所以.
由圖可知,二面角為鈍角,所以二面角的大小為.
(ⅱ)假設(shè)在線段上存在點(diǎn),使得.
設(shè),則.
因?yàn)?/span>
,
又,
所以.
所以.
故點(diǎn)在點(diǎn)處時(shí),有
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn),,且橢圓過(guò)點(diǎn),,且是橢圓上位于第一象限的點(diǎn),且的面積.
(1)求點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)的直線與橢圓相交于點(diǎn),,直線,與軸相交于,兩點(diǎn),點(diǎn),則是否為定值,如果是定值,求出這個(gè)定值,如果不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),過(guò)點(diǎn)作與軸平行的直線交函數(shù)的圖像于點(diǎn),過(guò)點(diǎn)作圖像的切線交軸于點(diǎn),則面積的最小值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的離心率是.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn),為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為,若,請(qǐng)判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某日A,B,C三個(gè)城市18個(gè)銷(xiāo)售點(diǎn)的小麥價(jià)格如下表:
銷(xiāo)售點(diǎn)序號(hào) | 所屬城市 | 小麥價(jià)格(元/噸) | 銷(xiāo)售點(diǎn)序號(hào) | 所屬城市 | 小麥價(jià)格(元/噸) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(1)甲以B市5個(gè)銷(xiāo)售點(diǎn)小麥價(jià)格的中位數(shù)作為購(gòu)買(mǎi)價(jià)格,乙從C市4個(gè)銷(xiāo)售點(diǎn)中隨機(jī)挑選2個(gè)了解小麥價(jià)格.記乙挑選的2個(gè)銷(xiāo)售點(diǎn)中小麥價(jià)格比甲的購(gòu)買(mǎi)價(jià)格高的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)如果一個(gè)城市的銷(xiāo)售點(diǎn)小麥價(jià)格方差越大,則稱其價(jià)格差異性越大.請(qǐng)你對(duì)A,B,C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫(xiě)出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是由正整數(shù)組成的無(wú)窮數(shù)列,對(duì)任意,滿足如下兩個(gè)條件:①是的倍數(shù);②.
(1)若,,寫(xiě)出滿足條件的所有的值;
(2)求證:當(dāng)時(shí),;
(3)求所有可能取值中的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在中, , , , 為的平分線,點(diǎn)在線段上, .如圖2所示,將沿折起,使得平面平面,連結(jié),設(shè)點(diǎn)是的中點(diǎn).
圖1 圖2
(1)求證: 平面;
(2)在圖2中,若平面,其中為直線與平面的交點(diǎn),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(且)是定義域?yàn)?/span>的奇函數(shù).
(1)若,試求不等式的解集;
(2)若,且,求在上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com