分析 由等比數(shù)列的通項公式和等差數(shù)列性質(zhì),得q=1或q=$\frac{1+\sqrt{5}}{2}$,再由$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$=$\frac{{a}_{1}{q}^{2}+{a}_{1}{q}^{4}}{{a}_{1}{q}^{3}+{a}_{1}{q}^{5}}$=$\frac{1}{q}$,能求出結果.
解答 解:∵各項均為正數(shù)的等比數(shù)列{an}滿足a3、a5、a6成等差數(shù)列,
∴2a5=a3+a6,即2${a}_{1}{q}^{4}$=${a}_{1}{q}^{2}+{a}_{1}{q}^{5}$,
整理,得q3-2q2+1=0,即(q-1)(q2-q-1)=0,
由q>0,解得q=1或q=$\frac{1+\sqrt{5}}{2}$,
∴$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$=$\frac{{a}_{1}{q}^{2}+{a}_{1}{q}^{4}}{{a}_{1}{q}^{3}+{a}_{1}{q}^{5}}$=$\frac{1}{q}$,
∴當q=1時,$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$=1;當q=$\frac{1+\sqrt{5}}{2}$時,$\frac{2}{1+\sqrt{5}}$=$\frac{\sqrt{5}-1}{2}$.
故答案為:1或$\frac{\sqrt{5}-1}{2}$.
點評 本題考查等比數(shù)列中兩項和的比值的求法,是中檔題,解題時要認真審題,注意等比數(shù)列和等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a>b>0,則${log_{\frac{1}{2}}}a>{log_{\frac{1}{2}}}b$ | |
B. | 向量$\overrightarrow a=(1,m),\overrightarrow b=(m,2m-1)$(m∈R)共線的充要條件是m=0 | |
C. | 命題“?n∈N*,3n>(n+2)•2n-1”的否定是“?n∈N*,3n≥(n+2)•2n-1” | |
D. | 已知函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,則命題“若f(a)•f(b)<0,則f(x)在區(qū)間(a,b)內(nèi)至少有一個零點”的逆命題為假命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | log34 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com