9.已知$cos(\frac{3π}{14}-θ)=\frac{1}{3}$,則$sin(\frac{2π}{7}+θ)$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

分析 利用誘導公式即可得到$sin(\frac{2π}{7}+θ)$的值.

解答 解:∵$cos(\frac{3π}{14}-θ)=\frac{1}{3}$,
∴$cos(\frac{3π}{14}-θ)$=sin($\frac{π}{2}$-$\frac{3π}{14}$+θ)=$sin(\frac{2π}{7}+θ)$=$\frac{1}{3}$.
故選:A.

點評 本題考查的知識點是兩角和與差的正弦公式,誘導公式,難度不大,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.各項均為正數(shù)的等比數(shù)列{an}滿足a3、a5、a6成等差數(shù)列,則$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$=1或$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2+bx-lnx(a,b∈R).
(Ⅰ)當a=8,b=-6,求f(x)的零點的個數(shù);
(Ⅱ)設a>0,且x=1是f(x)的極小值點,試比較lna與-2b的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)求值:$\frac{{sin{{330}^0}.sin(-\frac{13}{3}π).sin{{270}^0}}}{{cos(-\frac{19}{6}π).cos{{690}^0}}}$
(2)已知角α終邊上一點P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設函數(shù)f(x)=$\frac{{{{(x+1)}^2}+sinx}}{{{x^2}+1}}$的最大值為M,最小值為m,則M+m=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若平面α∥β,直線a⊆α,直線b⊆β,那么直線a,b的位置關系是( 。
A.相交B.平行C.異面D.平行或異面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=$\left\{\begin{array}{l}{x^3},x≥0\\|lg(-x)|,x<0\end{array}$,則函數(shù)y=2f2(x)-3f(x)的零點個數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若三棱錐P-ABC的側棱長PA=PB=PC,則點P在底面的射影O是△ABC的外心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知下列兩種說法:
①方程x2+mx+1=0有兩個不同的負根;
②方程4x2+4(m-2)x=1=0無實根.
(1)若①和②都成立,求實數(shù)m的范圍;
(2)若①和②中至少有一個成立,求實數(shù)m的范圍;
(3)若①和②中有且只有一個成立,求實數(shù)m的范圍.

查看答案和解析>>

同步練習冊答案