1.若函數(shù)f(log2x+1)=2x+x-9,則f(3)=(  )
A.7B.10C.11D.20

分析 由函數(shù)性質(zhì)得f(3)=f(log24+1),由此能求出結(jié)果.

解答 解:∵函數(shù)f(log2x+1)=2x+x-9,
∴f(3)=f(log24+1)=24+4-9=11.
故選:C.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$,過右焦點(diǎn)F2作雙曲線的弦AB,且|AB|=5,設(shè)該雙曲線的另一焦點(diǎn)為F1,求△ABF1的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.底邊邊長為1,側(cè)棱長為$\sqrt{2}$的正四棱柱ABCD-A1B1C1D1的對角線AC1的長度為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,正方形ABCD中,M,N分別是BC,CD的中點(diǎn),若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,則λ+μ=$\frac{8}{5}$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如表數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷量y(件)908483807568
(1)求回歸直線方程$\widehat{y}$=bx+a,a=$\overline{y}$-b$\overline{x}$;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤=銷售收入-成本)
求線性回歸方程系數(shù)公式b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點(diǎn).已知PA⊥AC,PA=3,BC=4,DF=$\frac{5}{2}$.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=ex+2xf′(1),則f′(-1)=e-1-2e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出以下四個(gè)結(jié)論:
①函數(shù)$f(x)=\frac{2x-1}{x+1}$的對稱中心是(-1,2);
②在△ABC中,“A>B”是“cos2A<cos2B”的充分不必要條件;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的必要不充分條件;
④若將函數(shù)f(x)=sin(2x-$\frac{π}{3}$)的圖象向右平移φ(φ>0)個(gè)單位后變?yōu)榕己瘮?shù),則φ的最小值是$\frac{π}{12}$.
其中正確的結(jié)論是:①③④(寫出所有的正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若角α為第三象限角,則$\frac{α}{2}$角所在的象限是(  )
A.一或二B.一或三C.二或三D.二或四

查看答案和解析>>

同步練習(xí)冊答案