已知函數(shù)
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值.
(1);(2);(3) .
解析試題分析:(1)曲線在點(diǎn)處的切線斜率,等于函數(shù)在該點(diǎn)的導(dǎo)數(shù)值.
(2)遵循“求導(dǎo)數(shù)、求駐點(diǎn)、討論區(qū)間導(dǎo)數(shù)值的正負(fù)、確定極值”等步驟,
通過討論,,,時函數(shù)的單調(diào)性,確定得到最小值,
確定的取值范圍.
(3)根據(jù)題目的條件結(jié)構(gòu)特征,構(gòu)造函數(shù),即,
只要在上單調(diào)遞增即可.
通過研究
討論,,得到在上單調(diào)遞增;
當(dāng)時,只需在上恒成立,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/d/7k9kk.png" style="vertical-align:middle;" />,將問題轉(zhuǎn)化成只要,從而,利用一元二次不等式的知識,得到實(shí)數(shù)的取值范圍.
本題突出利用了“轉(zhuǎn)化與化歸思想”.
試題解析:(1)當(dāng)時,,
∵,
∴曲線在點(diǎn)處的切線方程是;
(2)函數(shù)x的定義域是.
當(dāng)時,
令,得或.
當(dāng),即時,在上單調(diào)遞增,
所以在上的最小值是;
當(dāng)時,在上的最小值是,不合題意;
當(dāng)時,在上單調(diào)遞減,
所以在上的最小值是,不合題意.
綜上,a≥1;
(3)設(shè),則,
只要在上單調(diào)遞增即可。 10分
而
當(dāng)時,,此時在上單調(diào)遞增; 11分
當(dāng)時,只需在上恒成立,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/d/7k9kk.png" style="vertical-align:middle;" />,只要,
則需要,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),()
(1)對于函數(shù)中的任意實(shí)數(shù)x,在上總存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍
(2)設(shè)函數(shù),當(dāng)在區(qū)間內(nèi)變化時,
(1)求函數(shù)的取值范圍;
(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)當(dāng)時,求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)如果對于任意,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
(1)當(dāng)時,求的極值;
(2)當(dāng)時,討論的單調(diào)性;
(3)若對任意的,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若函數(shù)在處與直線相切,
(1)求實(shí)數(shù),的值;(2)求函數(shù)上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
(1)當(dāng)a=0時,f(x)≥g(x)在(1,+∞),上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時,若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),當(dāng)時,.
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時,不等式恒成立,求實(shí)數(shù)k的取值范圍;
(3)試證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,且直線與曲線相切.
(1)若對內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,求最大的正整數(shù),使得對(是自然對數(shù)的底數(shù))內(nèi)的任意個實(shí)數(shù) 都有成立;
(3)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com