【題目】定義:若無窮數(shù)列滿足是公比為的等比數(shù)列,則稱數(shù)列為“數(shù)列”.設數(shù)列

1)若,且數(shù)列是“數(shù)列”,求數(shù)列的通項公式;

2)設數(shù)列的前項和為,且,請判斷數(shù)列是否為“數(shù)列”,并說明理由;

3)若數(shù)列是“數(shù)列”,是否存在正整數(shù),使得?若存在,請求出所有滿足條件的正整數(shù);若不存在,請說明理由.

【答案】1;(2)是“數(shù)列”,證明見解析;(3)存在,;

【解析】

1)計算,故是公比為1的等比數(shù)列,計算得到答案.

2是“”數(shù)列,化簡得到,即,得到證明.

3是公比為2的等比數(shù)列,,利用累加法得到,得到,計算得到答案.

1)由題意可得,

由數(shù)列為“數(shù)列”可得,即,

是公比為1的等比數(shù)列,即

是首項為1,公差為3的等差數(shù)列,

2是“”數(shù)列,,

理由如下:時,由,可得

兩式作差可得,

,兩式作差可得,即,

,可得,則,

對任意成立,則為首項是,公比為3的等比軟列,

數(shù)列;

3)由數(shù)列,可得是公比為2的等比數(shù)列,

,則,由,可得,則,

,

,若正整數(shù)滿足,則,

,則,則,

,則,不滿足,

,則,則,即

,則正整數(shù),則;

因此存在滿足條件的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,討論函數(shù)的單調性;

(Ⅱ)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校甲、乙、丙三個興趣小組的學生人數(shù)分別為36,24,12.現(xiàn)采用分層抽樣的方法從中抽取6人,進行睡眠質量的調查.

1)應從甲、乙、丙三個興趣小組的學生中分別抽取多少人?

2)設抽出的6人分別用、、表示,現(xiàn)從6人中隨機抽取2人做進一步的身體檢查.

i)試用所給字母列出所有可能的抽取結果;

ii)設為事件抽取的2人來自同一興趣小組,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線一點作兩條直線分別交拋物線于,,斜率存在且傾斜角互補時

值;

直線上的截距時,面積最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓經過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BCAC⊥BD.

)證明:BD⊥PC

)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】明初出現(xiàn)了一大批杰出的騎兵將領,比如徐達、常遇春、李文忠、藍玉和朱棣.明初騎兵軍團擊敗了不可一世的蒙古騎兵,是當時世界上最強騎兵軍團.假設在明軍與元軍的某次戰(zhàn)役中,明軍有8位將領,善用騎兵的將領有5人;元軍有8位將領,善用騎兵的有4人.

1)現(xiàn)從明軍將領中隨機選取4名將領,求至多有3名是善用騎兵的將領的概率;

2)在明軍和元軍的將領中各隨機選取2人,為善用騎兵的將領的人數(shù),寫出的分布列,并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn,若對任意正整數(shù)n,總存在正整數(shù)m,使得Snam,則稱數(shù)列{an}S數(shù)列

1S數(shù)列的任意一項是否可以寫成其某兩項的差?請說明理由.

2)①是否存在等差數(shù)列為S數(shù)列,若存在,請舉例說明;若不存在,請說明理由.

②是否存在正項遞增等比數(shù)列為S數(shù)列,若存在,請舉例說明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】0,1,23,4這五個數(shù)中任選三個不同的數(shù)組成一個三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.

1)求X是奇數(shù)的概率;

2)求X的概率分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案