由命題“存在x∈R,使e|x1|-m≤0”是假命題,得m的取值范圍是(-∞,a),則實數(shù)a的取值是(  )

A.(-∞,1)         B.(-∞,2)         C.1                D.2

 

【答案】

C

【解析】

試題分析:命題“存在x∈R,使e|x1|-m≤0”是假命題,則命題是真命題,即不等式恒成立,最小值為1

考點:命題的否定及不等式恒成立

點評:特稱命題的否定是全稱命題,不等式恒成立求參數(shù)范圍常采用分離參數(shù),轉(zhuǎn)化為求函數(shù)最值問題

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

9、由命題“存在x∈R,使x2+2x+m≤0”是假命題,求得m的取值范圍是(a,+∞),則實數(shù)a的值是
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由命題“存在x∈R,使x2+2x+m≤0”是假命題,則實數(shù)m的取值范圍為
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由命題“存在x∈R,使e|x-1|-m≤0”是假命題,得m的取值范圍是(-∞,a),則實數(shù)a的值是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省福州三中高三(上)第二次月考數(shù)學試卷(理科)(解析版) 題型:填空題

由命題“存在x∈R,使x2+2x+m≤0”是假命題,則實數(shù)m的取值范圍為   

查看答案和解析>>

同步練習冊答案