【題目】設定義在上的函數(shù)滿足任意都有,,,,,的大小關系是( )

A. B.

C. D.

【答案】A

【解析】

函數(shù)f(x)滿足f(t+2)=,可得f(x)是周期為4的函數(shù).6f(2017)=6f(1),3f(2018)

=3f(2),2f(2019)=2f(3).令g(x)=,x(0,4],則g′(x)=0,利

用其單調(diào)性即可得出.

函數(shù)f(x)滿足f(t+2)=,可得f(t+4)==f(t),f(x)是周期為4的函數(shù).

6f(2017)=6f(1),3f(2018)=3f(2),2f(2019)=2f(3).

g(x)=,x(0,4],則g′(x)=

x(0,4]時,,

g′(x)0,g(x)在(0,4]遞增,

f(1)

可得:6f(1)3f(2)<2f(3),即6f(2017)3f(2018)<2f(2019).

故答案為:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知:橢圓的焦距為2,且經(jīng)過點,是橢圓上異于的兩個動點.

1)求橢圓的方程;

2)若,求證:直線過定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,過曲線外的一點(其中,為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫出曲線和直線的普通方程(以極點為原點,極軸為 軸的正半軸建系);

)若成等比數(shù)列,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在五面體中,,.

1)證明:平面平面;

2)若,是等腰直角三角形,,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201941021時整,全球六地(上海和臺北、布魯塞爾、圣地亞哥、東京和華盛頓同時召開新聞發(fā)布會,宣布人類首次利用虛擬射電望遠鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個中心為黑色的明亮環(huán)狀結構,看上去有點像個橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉的吸積盤.某同學作了一張黑洞示意圖,如圖所示,由兩個同心圓和半個同心圓環(huán)構成圓及圓環(huán)的半徑從內(nèi)到外依次為2,3,4,5個單位在圖中隨機任取一點,則該點取自陰影的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知多面體PABCDE的底面ABCD是邊長為2的菱形,底面ABCD,,且.

1)證明:平面平面;

2)若,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的部分圖象如圖所示

(1)的最小正周期及解析式;

(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐SABCD中,側面SCD為鈍角三角形且垂直于底面ABCDCDSD,點MSA的中點,AD//BC,∠ABC90°,ABADBCa

1)求證:平面MBD⊥平面SCD;

2)若∠SDC120°,求三棱錐CMBD的體積.

查看答案和解析>>

同步練習冊答案