12.在△ABC中,角A,B,C所對(duì)的分別為a,b,c,且acosB=(3c-b)cosA.
(1)若asinB=2$\sqrt{2}$,求b;
(2)若a=2$\sqrt{2}$,且△ABC的面積為$\sqrt{2}$,求△ABC的周長(zhǎng).

分析 (1)由acosB=(3c-b)cosA,利用正弦定理可得:sinAcosB=(3sinC-sinB)cosA,再利用和差公式、誘導(dǎo)公式可得cosA=$\frac{1}{3}$,sinA=$\sqrt{1-co{s}^{2}A}$,再利用正弦定理即可得出.
(2)由△ABC的面積為$\sqrt{2}$,可得bc=3,再利用余弦定理即可得出.

解答 解:(1)∵acosB=(3c-b)cosA,∴sinAcosB=(3sinC-sinB)cosA,∴sin(A+B)=sinC=3sinCcosA,sinC≠0,∴cosA=$\frac{1}{3}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$.
∵$asinB=2\sqrt{2}$,∴$b=\frac{{a{sinB}}}{sinA}=3$.
(2)∵△ABC的面積為$\sqrt{2}$,∴$\frac{{\sqrt{2}}}{3}bc=\sqrt{2}$,得bc=3,
∵$a=2\sqrt{2}$,∴${b^2}+{c^2}-\frac{2}{3}bc=8$,
∴${({b+c})^2}-\frac{8}{3}bc=8$,即(b+c)2=16,
∵b>0,c>0,∴b+c=4,
∴△ABC的周長(zhǎng)為$a+b+c=4+2\sqrt{2}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A(2,1),若動(dòng)點(diǎn)M(x,y)滿(mǎn)足不等式組$\left\{\begin{array}{l}2x+y-12≤0\\ x-4y+3≤0\\ x≥1\end{array}\right.$,則使$\overrightarrow{OA}•\overrightarrow{OM}$取得最大值的動(dòng)點(diǎn)M的個(gè)數(shù)是(  )
A.存在唯一1個(gè)B.存在無(wú)數(shù)多個(gè)C.恰好2個(gè)D.至多存在3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系下,直線(xiàn)l過(guò)點(diǎn)P(1,1),傾斜角α=$\frac{π}{4}$,以原點(diǎn)O為極點(diǎn),以Χ軸非負(fù)半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫(xiě)出l的參數(shù)方程和C的直角坐標(biāo)方程
(2)設(shè)l與曲線(xiàn)C交于A、B兩點(diǎn),求$\frac{1}{{|{PA}|}}$+$\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.非零復(fù)數(shù)z1,z2滿(mǎn)足|z1+z2|=|z1-z2|,u=($\frac{{z}_{1}}{{z}_{2}}$)2,則u( 。
A.u<0B.u>0C.u=0D.以上都可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.圓x2+y2+4y+3=0與直線(xiàn)kx-y-1=0的位置關(guān)系是( 。
A.相離B.相交或相切C.相交D.相交,相切或相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,D在邊AC上,AB=4,AC=6,BD=2$\sqrt{6}$,BC=2$\sqrt{10}$.則∠A+∠CBD=(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ex-ax-1(a為常數(shù))在x=ln2處取得極值.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x>0時(shí),ex>x2+1;
(3)證明:當(dāng)n∈N*時(shí),1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$>ln$\frac{(n+1)^{3}}{(3e)^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(Ⅰ)求$\frac{1+cos20°}{2sin20°}$-2sin10°•tan80°的值.
(Ⅱ)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若函數(shù)$f(x)=sinωx+acosωx(ω>0)的圖象關(guān)于點(diǎn)M({\frac{π}{3},0})對(duì)稱(chēng)$,且在$x=\frac{π}{6}$處函數(shù)有最小值,則a+ω在[0,10]上的一個(gè)可能值是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案