14.已知向量$\overrightarrow a=(4,2),\overrightarrow b=(x,3)$,且$\overrightarrow a⊥\overrightarrow b$,則x的值是-$\frac{3}{2}$.

分析 根據(jù)題意,由于$\overrightarrow a⊥\overrightarrow b$,則有$\overrightarrow{a}$•$\overrightarrow$=0,將$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo)代入計(jì)算即可得答案.

解答 解:根據(jù)題意,向量$\overrightarrow a=(4,2),\overrightarrow b=(x,3)$,
若$\overrightarrow a⊥\overrightarrow b$,則有$\overrightarrow{a}$•$\overrightarrow$=4x+6=0,
解可得x=-$\frac{3}{2}$;
故答案為:-$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)計(jì)算,注意向量垂直即兩向量的數(shù)量積為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河南省新鄉(xiāng)市高二上學(xué)期入學(xué)考數(shù)學(xué)卷(解析版) 題型:填空題

對(duì)于函數(shù),給出下列命題:

①圖像關(guān)于原點(diǎn)成中心對(duì)稱

②圖像關(guān)于直線對(duì)稱

③函數(shù)的最大值是3

④函數(shù)的一個(gè)單調(diào)增區(qū)間是

其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,A,B分別為橢圓C的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn).
(Ⅰ)若點(diǎn)Q為橢圓C的上頂點(diǎn),求△QF1F2內(nèi)切圓的面積;
(Ⅱ)若斜率為k,過(guò)定點(diǎn)F2的直線l與橢圓C交于M,N兩點(diǎn),試證明:直線AM、直線BN與直線x=4三線必定共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《數(shù)書(shū)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代具有很高的數(shù)學(xué)水平,其求法是“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪,減上,余四約之,為實(shí),一為從偶,開(kāi)平方得積”,若把這段文字寫(xiě)成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$,現(xiàn)有周長(zhǎng)為10的△ABC滿足sinA:sinB:sin:C=5:7:8,試用以上給出的公式求得△ABC的面積為(  )
A.$\frac{5}{8}$B.$\frac{5\sqrt{3}}{2}$C.10$\sqrt{3}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.y=$tan(4x+\frac{π}{3})$的最小正周期是( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(Ⅰ)化簡(jiǎn):$\frac{{{{sin}^2}(α-\frac{π}{2})}}{{cos(α-3π)+sin(\frac{3π}{2}+α)}}$
(Ⅱ)計(jì)算:sin30°cos60°+tan45°cos90°-sin180°cos270°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知向量$\overrightarrow a$表示“向東航行3km”,向量$\overrightarrow b$表示“向南航行3km,則$\overrightarrow a$+$\overrightarrow b$表示(  )
A.向東南航行6kmB.向東南航行3$\sqrt{2}$kmC.向東北航行3$\sqrt{2}$kmD.向東北航行6km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.(文)已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(1,1),$\overrightarrow{c}$=($\sqrt{2}$cosα,$\sqrt{2}$sinα)(a∈R),實(shí)數(shù)m,n滿足m$\overrightarrow{a}$+n$\overrightarrow$=2$\overrightarrow{c}$,則(m-4)2+n2的最大值為(  )
A.4B.$20+8\sqrt{2}$C.32D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex,g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(I)函數(shù)h(x)=xf (x),當(dāng)a=l,b=0時(shí),若函數(shù)h(x)與g(x)具有相同的單調(diào)區(qū)間,求m的值;
(II)記F(x)=f(x)-g(x).當(dāng)a=2,m=0時(shí),若函數(shù)F(x)在[-1,2]上存在兩個(gè)不同的零點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案