5.如圖,半徑為1的扇形AOB的圓心角為120°,點(diǎn)C在$\widehat{AB}$上,且∠COA=30°,若$\overrightarrow{OC}$=$λ\overrightarrow{OA}$$+μ\overrightarrow{OB}$,則λ+μ$\sqrt{3}$.

分析 如圖所示,過點(diǎn)C作CE∥OA,CD∥OB,分別交OB,OA于點(diǎn)E,D.∠BOD=120°,可得CDO=60°.又∠COD=30°,可得∠OCD=90°.OC=1,可得CD=$\frac{\sqrt{3}}{3}$,OD=$\frac{2\sqrt{3}}{3}$.再利用向量共線定理、向量平行四邊形法則.

解答 解:如圖所示,過點(diǎn)C作CE∥OA,CD∥OB,分別交OB,OA于點(diǎn)E,D.
∵∠BOD=120°,∴CDO=60°.
又∠COD=30°,∴∠OCD=90°.
∵OC=1,∴CD=$\frac{\sqrt{3}}{3}$,OD=$\frac{2\sqrt{3}}{3}$.
∴$\overrightarrow{OD}$=$\frac{2\sqrt{3}}{3}$$\overrightarrow{OA}$,$\overrightarrow{OE}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OB}$.
∴$\overrightarrow{OC}$=$\overrightarrow{OE}+\overrightarrow{OD}$=$\frac{\sqrt{3}}{3}$$\overrightarrow{OB}$+$\frac{2\sqrt{3}}{3}$$\overrightarrow{OA}$,
又$\overrightarrow{OC}$=$λ\overrightarrow{OA}$$+μ\overrightarrow{OB}$,
則λ=$\frac{2\sqrt{3}}{3}$,μ=$\frac{\sqrt{3}}{3}$.
∴λ+μ=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了向量共線定理、向量平行四邊形法則、平面向量基本定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(Ⅰ)求證:AB1⊥CC1
(Ⅱ)若$A{B_1}=\sqrt{6}$,求平面CAB1與平面A1AB1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,若b=1,c=$\sqrt{3}$,∠C=$\frac{2π}{3}$,則a等于( 。
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題?x∈R,ex-x-1≥0的否定是( 。
A.?x∈R,ex-x-1≤0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0
C.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0D.?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z滿足z=(1+i)(($\frac{7}{2}$$+\frac{1}{2}$i)(i為虛數(shù)單位),則z的模為( 。
A.$\sqrt{5}$B.5C.2$\sqrt{6}$D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從如圖所示的長(zhǎng)方形區(qū)域內(nèi)任取一個(gè)點(diǎn)M(x,y),則點(diǎn)M取自陰影部分的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在梯形ABCD中,$\overrightarrow{DC}$=2$\overrightarrow{AB}$=4$\overrightarrow{PC}$,且$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ+μ的值為( 。
A.1B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+mx2+nx-2的圖象在點(diǎn)(-1,f(-1))處的切線方程為9x-y+3=0.
(1)求函數(shù)y=f(x)的解析式和單調(diào)區(qū)間;
(2)若函數(shù)f(x)(x∈[0,3])的值域?yàn)锳,函數(shù)f(x)(x∈[a,a+$\frac{3}{2}$])的值域?yàn)锽,當(dāng)A⊆B時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓P:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點(diǎn)為M,上頂點(diǎn)為N,直線MN的斜率為$\frac{{\sqrt{3}}}{2}$,坐標(biāo)原點(diǎn)O到直線MN的距離為$\frac{{2\sqrt{21}}}{7}$.
(Ⅰ)求橢圓P的方程;
(Ⅱ)已知正方形ABCD的頂點(diǎn)A、C在橢圓P上,頂點(diǎn)B、D在直線7x-7y+1=0上,求該正方形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案