(x2+2)(
1
x2
-mx)5展開式中x2項的系數(shù)為250,則實數(shù)m的值為 (  )
A、±5
B、5
C、±
5
D、
5
考點:二項式定理的應用
專題:二項式定理
分析:求出(
1
x2
-mx)5 的展開式,可得(x2+2)(
1
x2
-mx)5展開式中x2項的系數(shù),再根據(jù)x2項的系數(shù)為250,求得m的值.
解答: 解:∵(x2+2)(
1
x2
-mx)5 =(x2+2)(x-10 -5•m•x-7+10m2•x-4-10m3x-1 +5m4•x2-m5•x5 ),
故展開式中x2項的系數(shù)為10m4 =250,求得m=±
5
,
故選:C.
點評:本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a b是非負數(shù) 且滿足2≤a+2b≤4 那么(a+1)2+(b+1)2的取值范圍是( 。
A、[5,
26
]
B、[5,26]
C、[
5
,
7
5
5
]
D、[
26
7
5
5
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓臺的體積是
26
3
3
πcm3,側面展開圖是半圓環(huán),半圓環(huán)的大半徑是小半徑的3倍,求這個圓臺小底面的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校學生參加了“鉛球”和“立定跳遠”兩個科目的體能測試,每個科目的成績分為A,B,C,D.E五個等級,該校某班學生兩科目測試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“鉛球”科目盼成績?yōu)镋的學生有8人.

(I)求該班學生中“立定跳遠”科目中成績?yōu)锳的人數(shù);
(Ⅱ)已知該班學生中恰有2人的兩科成績等級均為A,在至少一科成績等級為A的學生中,隨機抽取2人進行訪談,求這2人的兩科成績等級均為A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin4x+2
3
sinxcosx-cos4x的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知,等差數(shù)列{an}的公差d>0,其前n項和為Sn,a1=1,S2S3=36;
(1)求出數(shù)列{an}的通項公式an及前n項和公式Sn
(2)若數(shù)列{bn}滿足b1=2,bn-bn-1=dn(n≥2),求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(
2
,3π),化簡
1-sinα
+
1+sinα
=( 。
A、-2cos
α
2
B、2cos
α
2
C、-2sin
α
2
D、2sin
α
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
n→∞
an
n+a
=1,則常數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的所有頂點都在球O的球面上,△ABC是邊長為1的等邊三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積是( 。
A、4π
B、
3
4
π
C、3π
D、
4
3
π

查看答案和解析>>

同步練習冊答案