【題目】若D′是平面α外一點(diǎn),則下列命題正確的是(
A.過D′只能作一條直線與平面α相交
B.過D′可作無數(shù)條直線與平面α垂直
C.過D′只能作一條直線與平面α平行
D.過D′可作無數(shù)條直線與平面α平行

【答案】D
【解析】解:觀察正方體,A、過D′可以能作不止一條直線與平面α相交,故A錯(cuò);
B、過D′只可作一數(shù)條直線與平面α垂直,故B錯(cuò);
C、過D′能作不止一條直線與平面α平行,故C錯(cuò);
D、過平面外一點(diǎn)有且只有一個(gè)平面與已知平面平行,
且這個(gè)平面內(nèi)的任一條直線都與已知平面平行,故D對(duì).
故選D.

【考點(diǎn)精析】關(guān)于本題考查的空間中直線與平面之間的位置關(guān)系,需要了解直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題,其中正確的命題是____.(填出所有正確命題的序號(hào))

x=y=sin2x+)的一條對(duì)稱軸;

y=esin2x是以π為周期在(0,)上的增函數(shù);

③函數(shù)y=3sin2x+)的圖象可由y=3sin2x的圖象向左平移個(gè)單位得到.

④設(shè)x1x2是關(guān)于x的方程|logax|=ka0,a≠1k0)的兩根,則x1x2=1;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照,,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)悉,2017年教育機(jī)器人全球市場(chǎng)規(guī)模已達(dá)到8.19億美元,中國(guó)占據(jù)全球市場(chǎng)份額10.8%.通過簡(jiǎn)單隨機(jī)抽樣得到40家中國(guó)機(jī)器人制造企業(yè),下圖是40家企業(yè)機(jī)器人的產(chǎn)值頻率分布直方圖.

(1)求的值;

(2)在上述抽取的40個(gè)企業(yè)中任取3個(gè),抽到產(chǎn)值小于500萬(wàn)元的企業(yè)不超過兩個(gè)的概率是多少?

(3)在上述抽取的40個(gè)企業(yè)中任取2個(gè),設(shè)為產(chǎn)值不超過500萬(wàn)元的企業(yè)個(gè)數(shù)減去超過500萬(wàn)元的企業(yè)個(gè)數(shù)的差值,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(1)若,極大值;

(2)若無零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若有兩個(gè)相異零點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知符號(hào)函數(shù)sgnx= ,f(x)是R上的增函數(shù),g(x)=f(x)﹣f(ax)(a>1),則(
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]
D.sgn[g(x)]=﹣sgn[f(x)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.的中點(diǎn),的中點(diǎn),過點(diǎn),的平面交.

(1)求證:平面;

(2)若時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x,x∈R.

(1)當(dāng)m取何值時(shí),方程|f(x)-2|=m有一個(gè)解??jī)蓚(gè)解?

(2)若不等式[f(x)]2f(x)-m>0在R上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD外接于圓,AC是圓周角∠BAD的角平分線,過點(diǎn)C的切線與AD延長(zhǎng)線交于點(diǎn)E,AC交BD于點(diǎn)F.

(1)求證:BD∥CE;
(2)若AB是圓的直徑,AB=4,DE=1,求AD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案