【題目】已知函數(shù),,
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.
【答案】(1);(2)見(jiàn)解析.
【解析】試題分析:(1)欲求曲線在點(diǎn)處的切線方程,只需求出斜率和和的值,即可利用直線的點(diǎn)斜式方程求解切線的方程;
(2)求出,通過(guò)討論的取值范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可,可分兩種情況,求出函數(shù)的單調(diào)區(qū)間,得出函數(shù)的極值.
試題解析:
(1)時(shí),,
所以,
因此曲線在點(diǎn)處的切線方程是
即
(2)
①當(dāng)時(shí),恒成立,
所以當(dāng)時(shí),單調(diào)遞減
當(dāng)時(shí),,單調(diào)遞增
所以當(dāng)時(shí),取極小值
②當(dāng)時(shí),由得或
(ⅰ)當(dāng),即時(shí)
由得或
由得
所以在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,故時(shí),取極大值,時(shí),取極小值
(ⅱ)當(dāng),即時(shí),恒成立
此時(shí)函數(shù)在上單調(diào)遞增,函數(shù)無(wú)極值
(ⅲ)當(dāng),即時(shí)
由得或
由得
所以在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,故時(shí),取極大值
時(shí),取極小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓: 的離心率為,直線l:y=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)B,C是上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱(chēng),直線AB,AC分別交直線l于點(diǎn)E,F.記直線與的斜率分別為, .
① 求證: 為定值;
② 求△CEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,,且當(dāng)時(shí),是與的等差中項(xiàng).數(shù)列為等比數(shù)列,且,.
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(I) 討論函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)y=f(x),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求當(dāng)x<0時(shí),函數(shù)y=f(x)的解析式,并在給定坐標(biāo)系下,畫(huà)出函數(shù)y=f(x)的圖象;
(2)寫(xiě)出函數(shù)y=|f(x)|的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知2x≤256,且log2x≥ .
(1)求x的取值范圍;
(2)求函數(shù)f(x)=log2( )log2( )的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥研究所開(kāi)發(fā)一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè),服藥后每毫升血液中的含藥量y(微克)與時(shí)間t(小時(shí))之間近似滿(mǎn)足如圖所示的曲線.據(jù)進(jìn)一步測(cè)定,每毫升血液中含藥量不少于0.25微克時(shí),治療疾病有效,則服藥一次治療該疾病有效的時(shí)間為( )
A.4小時(shí)
B.
C.
D.5小時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(I)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;
(II)設(shè)點(diǎn)D在曲線上,且曲線在點(diǎn)D處的切線與直線垂直,試確定點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com