已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形F1B1 F2B2是一個面積為8的正方形.

(1)求橢圓C的方程;
(2)已知點P的坐標為P(-4,0), 過P點的直線L與橢圓C相交于M、N兩點,當線段MN的中點G落在正方形內(nèi)(包含邊界)時,求直線L的斜率的取值范圍.

(1);(2)

解析試題分析:(1)依題意需要求橢圓的標準方程,所以要找到兩個關(guān)于基本量的等式,由以及面積的關(guān)系可求橢圓的方程.
(2)由于直線與橢圓的相交得到的弦的中點坐標,可通過假設(shè)直線方程與橢圓的方程聯(lián)立可求得,判別式要大于零.其中用直線的斜率表示中點坐標.由于中點在正方形內(nèi),其實就是要符合一個不等式的可行域問題.因此通過解不等式即可得到所求的結(jié)論.
試題解析:(1)求得橢圓C的方程為;;
(2)∵點P的坐標為(-4,0),顯然直線L的斜率k存在,
∴直線L方程為 如圖設(shè)點M、N的坐標分別為,
線段MN的中點為,由
由△>0解得:      又
, ∵, ∴點G不可能在y軸的右邊,
又直線F1B2, F1B1的方程分別為.
∴點G在正方形B1F2B1F1內(nèi)的充要條件為:    即
.
考點:1.橢圓的性質(zhì).2.直線與橢圓的位置關(guān)系.3.線性規(guī)劃的知識.4.韋達定理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,一條準線lx=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標原點,Ml上的點,F為橢圓C的右焦點,過點FOM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ,求圓D的方程;
②若Ml上的動點,求證點P在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線CA,B兩點.若直線AOBO分別交直線lyx-2于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,焦距為的橢圓的兩個頂點分別為,且與n,共線.

(1)求橢圓的標準方程;
(2)若直線與橢圓有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓中心在坐標原點,焦點在x軸上,離心率為,它的一個頂點為拋物線x2=4y的焦點.
(1)求橢圓方程;
(2)若直線yx-1與拋物線相切于點A,求以A為圓心且與拋物線的準線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(1)化曲線的極坐標方程為直角坐標方程;
(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線Cy2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足O為坐標原點.

(1)求拋物線C的方程;
(2)以M點為起點的任意兩條射線l1l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點,l2與拋物線C交于DE兩點,線段AB,DE的中點分別為G,H兩點.求證:直線GH過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為橢圓上的三個點,為坐標原點.
(1)若所在的直線方程為,求的長;
(2)設(shè)為線段上一點,且,當中點恰為點時,判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點分別是橢圓的左、右焦點, 點在橢圓上上.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)直線、均與橢圓相切,試探究在軸上是否存在定點,點的距離之積恒為1?若存在,請求出點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案