已知拋物線Cy2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足,O為坐標原點.

(1)求拋物線C的方程;
(2)以M點為起點的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點,l2與拋物線C交于D,E兩點,線段ABDE的中點分別為G,H兩點.求證:直線GH過定點,并求出定點坐標.

(1)y2=4x(2)(10,0)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點.
(1)若是第一象限內(nèi)該橢圓上的一點,,求點的坐標;
(2)設過定點的直線與橢圓交于不同的兩點、,且為銳角(其
為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于PQ兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點MN,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形F1B1 F2B2是一個面積為8的正方形.

(1)求橢圓C的方程;
(2)已知點P的坐標為P(-4,0), 過P點的直線L與橢圓C相交于M、N兩點,當線段MN的中點G落在正方形內(nèi)(包含邊界)時,求直線L的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

A(x1,y1),B(x2y2)是橢圓C=1(a>b>0)上兩點,已知m,n,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△的兩個頂點的坐標分別是,,且所在直線的斜率之積等于
(1)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當時,過點的直線交曲線兩點,設點關于軸的對稱點為(不重合), 試問:直線軸的交點是否是定點?若是,求出定點,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點分別是F1F2,過點F1的直線l交橢圓CE、G兩點,且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足t (O為坐標原點),當||<時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于兩點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,過點的直線交拋物線于點,.
(Ⅰ)若(點在第一象限),求直線的方程;
(Ⅱ)求證:為定值(點為坐標原點).

查看答案和解析>>

同步練習冊答案