已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于.
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當(dāng)時(shí),過(guò)點(diǎn)的直線交曲線于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(不重合), 試問(wèn):直線與軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.
(1)詳見解析;(2).
解析試題分析:(1)設(shè)出頂點(diǎn)C的坐標(biāo),由AC,BC所在直線的斜率之積等于m(m≠0)列式整理得到頂點(diǎn)C的軌跡E的方程,然后分m的不同取值范圍判斷軌跡E為何種圓錐曲線;
(2)把代入E得軌跡方程,由題意設(shè)出直線l的方程,和橢圓方程聯(lián)立后利用根與系數(shù)關(guān)系求出M,N兩點(diǎn)的橫坐標(biāo)的和與積,由兩點(diǎn)式寫出直線MQ的方程,取y=0后求出x,結(jié)合根與系數(shù)關(guān)系可求得x=2,則得到直線MQ與x軸的交點(diǎn)是定點(diǎn),并求出定點(diǎn)..
試題解析:(1)由題知:
化簡(jiǎn)得: 2分
當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的橢圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示以為圓心半徑是1的圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的橢圓,且除去兩點(diǎn);
當(dāng)時(shí) 軌跡表示焦點(diǎn)在軸上的雙曲線,且除去兩點(diǎn); 6分
(2)設(shè)
依題直線的斜率存在且不為零,則可設(shè):,
代入整理得
,, 9分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/e/q8auv1.png" style="vertical-align:middle;" />不重合,則
的方程為 令,
得
故直線過(guò)定點(diǎn). 14分
解二:設(shè)
依題直線的斜率存在且不為零,可設(shè):
代入整理得:
,, 9分
的方程為 令,
得
直線過(guò)定點(diǎn) 14分
考點(diǎn):1.橢圓的簡(jiǎn)單性質(zhì);2.與直線有關(guān)的動(dòng)點(diǎn)軌跡方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的一點(diǎn),=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,焦距為的橢圓的兩個(gè)頂點(diǎn)分別為和,且與n,共線.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓有兩個(gè)不同的交點(diǎn)和,且原點(diǎn)總在以為直徑的圓的內(nèi)部,
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù),).
(1)化曲線的極坐標(biāo)方程為直角坐標(biāo)方程;
(2)若直線經(jīng)過(guò)點(diǎn),求直線被曲線截得的線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:y2=2px(p>0),M點(diǎn)的坐標(biāo)為(12,8),N點(diǎn)在拋物線C上,且滿足=,O為坐標(biāo)原點(diǎn).
(1)求拋物線C的方程;
(2)以M點(diǎn)為起點(diǎn)的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于D,E兩點(diǎn),線段AB,DE的中點(diǎn)分別為G,H兩點(diǎn).求證:直線GH過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)、,動(dòng)點(diǎn)滿足:,且
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知圓W: 的切線與軌跡相交于P,Q兩點(diǎn),求證:以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為橢圓上的三個(gè)點(diǎn),為坐標(biāo)原點(diǎn).
(1)若所在的直線方程為,求的長(zhǎng);
(2)設(shè)為線段上一點(diǎn),且,當(dāng)中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為,且過(guò)點(diǎn),點(diǎn)A、B分別是橢圓C長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.
(1)求橢圓C的方程;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點(diǎn)到點(diǎn)M的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com