17.已知z∈C,i是虛數(shù)單位,$\overline{z}$是z的共軛復(fù)數(shù),則下列說法與“z為純虛數(shù)”不等價的是( 。
A.z2<0B.$z+\overline{z}=0$
C.Rez=0且 Imz≠0D.z=|z|i或z=-|z|i,且|z|≠0

分析 由復(fù)數(shù)的基本概念逐一核對四個命題得答案.

解答 解:若z為純虛數(shù),則z=bi(b∈R且b≠0),則z2=-b2<0,反之,若z2<0,則z為純虛數(shù),∴z2<0與“z為純虛數(shù)”等價;
當(dāng)z為實數(shù)時,有$z+\overline{z}=0$,∴由$z+\overline{z}=0$與“z為純虛數(shù)”不等價;
Rez=0且 Imz≠0與“z為純虛數(shù)”等價;
令z=a+bi(a,b∈R),則|z|=$\sqrt{{a}^{2}+^{2}}$,由z=|z|i或z=-|z|i,得a=0,$\sqrt{{a}^{2}+^{2}}=±b$,
又|z|≠0,∴b≠0.
即z=|z|i或z=-|z|i,且|z|≠0與“z為純虛數(shù)”等價.
故選:B.

點評 本題考查命題的真假判斷與應(yīng)用,考查復(fù)數(shù)的基本概念,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(-2 015)+f(2 016)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l:x-y=1與圓M:x2+y2-2x+2y=0相交于A,C兩點,點B,D分別在圓M上運動,且位于直線AC兩側(cè),則四邊形ABCD面積的最大值為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若${(3{x^2}-\frac{1}{{2{x^3}}})^n}$的展開式中含有常數(shù)項,則當(dāng)正整數(shù)n取得最小值時,常數(shù)項的值為$\frac{135}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.不等式組$\left\{\begin{array}{l}x+a+1>0\\ ax>0\end{array}\right.$(a≠0)的解集為∅,則實數(shù)a的取值范圍是{a|a=0,或a≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)關(guān)于x的方程2x2-ax-2=0的兩根分別為α、β(α<β),函數(shù)$f(x)=\frac{4x-a}{{{x^2}+1}}$
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在銳角△ABC中,AB=3,AC=4,S△ABC=3,則BC=$\sqrt{25-12\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且滿足4Sn=(an+1)2,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}}{{2}^{n-1}}$,Tn為數(shù)列{bn}的前n項和,求證Tn<6:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=2cos({ωx+φ})-1({ω>0,|φ|<\frac{π}{8}})$,其圖象與直線y=1相鄰兩個交點的距離為$\frac{4}{3}π$,若f(x)>0對$x∈({-\frac{π}{8},\frac{π}{4}})$恒成立,則φ的取值范圍是( 。
A.$[{-\frac{π}{12},0}]$B.$({-\frac{π}{8},-\frac{π}{24}}]$C.$[-\frac{π}{12},\frac{π}{8})$D.$[{0,\frac{π}{12}}]$

查看答案和解析>>

同步練習(xí)冊答案