執(zhí)行如圖所示的程序框圖,輸出i的值為(  )
A、2B、3C、4D、5
考點:程序框圖
專題:算法和程序框圖
分析:列出循環(huán)過程中i的數(shù)值,滿足判斷框的條件即可結(jié)束循環(huán).
解答: 解:第1次判斷后i=2,
第2次判斷后i=3,
第3次判斷后i=4,滿足判斷框的條件,結(jié)束循環(huán),輸出結(jié)果:4.
故選C.
點評:本題考查循環(huán)框圖的應(yīng)用,注意判斷框的條件的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線3x+y-3=0與直線6x+my+1=0垂直,則m的值為(  )
A、2B、-2C、18D、-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域[1,2],則f(x2-1)的定義域
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(其中|φ|<
π
2
)的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點( 。﹤單位長度.
A、向右平移
π
6
B、向右平移
π
12
C、向左平移
π
6
D、向左平移
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)-f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>6x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-1,a,b,c,-4成等比數(shù)列,則實數(shù)b為(  )
A、4B、-2C、±2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)在定義域R上的導(dǎo)函數(shù)是f′(x),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時,(x-1)f′(x)<0,設(shè)a=f(0、b=f(
2
)、c=f(log28),則(  )
A、a<b<c
B、a>b>c
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題:
①log2x2=2log2x;
②A∪B=A的充要條件是B⊆A;
③將鐘的分針撥快10分鐘,則分針轉(zhuǎn)過的角度是60°;
④若y=ksinx+1,x∈R,則y的最小值為-k+1;
⑤若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax(x≥1)
對任意的x1≠x2都有
f(x2)-f(x2)
x2-x1
<0則實數(shù)a的取值范圍是(
1
7
,
1
3
).
其中正確命題的序號為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點O,EC⊥底面ABCD,F(xiàn)為BE的中點.
(1)求證:平面BDE⊥平面ACE;
(2)已知CE=1,點M為線段BD上的一個動點,直線EM與平面ABCD所成角的最大值為
π
4

①求正方形ABCD的邊長;
②在線段EO上是否存在一點G,使得CG⊥平面BDE?若存在,求出
EG
EO
的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案