15.定積分${∫}_{0}^{\frac{\sqrt{2}}{2}}$($\sqrt{1-{x}^{2}}$-x)dx=$\frac{π}{8}$.

分析 根據(jù)的定積分的幾何意義,所圍成的幾何圖形的面積是的四分之一,計算即可.

解答 解:${∫}_{0}^{\frac{\sqrt{2}}{2}}$($\sqrt{1-{x}^{2}}$-x)dx表示如圖所示的陰影部分的面積,根據(jù)定積分的幾何意義可得,${∫}_{0}^{\frac{\sqrt{2}}{2}}$($\sqrt{1-{x}^{2}}$-x)dx=$\frac{1}{8}$π×12=$\frac{π}{8}$,
故答案為:$\frac{π}{8}$.

點評 本題主要考查了定積分的幾何意義,根據(jù)數(shù)形結合的思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知a,b∈Z,“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b不都是奇數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$\overrightarrow a$=(2,3),$\overrightarrow b$=(-2,4),求:
(Ⅰ)$\overrightarrow a$+2$\overrightarrow b$和$\overrightarrow a$-$\overrightarrow b$的坐標;
(Ⅱ)(${\overrightarrow a$+2$\overrightarrow b}$)•(${\overrightarrow a$-$\overrightarrow b}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.閱讀如圖的程序框圖,若輸入n=6,則輸出k的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在各項均為正數(shù)的等比數(shù)列{an}中,若2a4+a3-2a2-a1=8,則2a5+a4的最小值為( 。
A.12B.$12\sqrt{2}$C.$12\sqrt{3}$D.$16\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列有關命題的說法中錯誤的是( 。
A.命題:“若y=f(x)是冪函數(shù),則y=f(x)的圖象不經(jīng)過第四象限”的否命題是假命題
B.設a,b∈R,則“a>b”是“a|a|>b|b|”的充要條件
C.命題“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“?n0∈N*,f(n0)∉N*且f(n0)≥n0
D.若p∨q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=|x-2|-|x+1|-1,g=-x+a.
(1)求不等式f(x)≥0的解集;
(2)若方程f(x)=g(x)有三個不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-4ln(x-1),a∈R
(1)若$a=\frac{1}{2}$,求曲線f(x)在點(2,f(2))處的切線方程;
(2)已知點P(1,1)和函數(shù)f(x)圖象上的動點M(mf(m)),對任意m∈[2,e+1],直線PM傾斜角都是鈍角,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若在區(qū)間[0,4]上任取一個數(shù)m,則函數(shù)f(x)=$\frac{1}{3}$x3-x2+mx在R上是單調增函數(shù)的概率是$\frac{3}{4}$.

查看答案和解析>>

同步練習冊答案