精英家教網 > 高中數學 > 題目詳情
2.若在區(qū)間[0,4]上任取一個數m,則函數f(x)=$\frac{1}{3}$x3-x2+mx在R上是單調增函數的概率是$\frac{3}{4}$.

分析 由題意,本題屬于幾何概型的概率求法,由此只要求出所有事件的區(qū)域長度以及滿足條件的m的范圍對應的區(qū)域長度,利用幾何概型概率公式可求.

解答 解:∵f(x)=$\frac{1}{3}$x3-x2+mx,
∴f′(x)=x2-2x+m,∴導函數為拋物線,開口向上,
∵要使f(x)在R上單調,
∴f'(x)=x2-2x+m≥0在R上恒成立,即m≥-x2+2x在R上恒成立,
∴m大于等于-x2+2x的最大值即可,
∵-x2+2x=-(x-1)2+1≤1,
∴m≥1,
∵m≤4,∴1≤m≤4,長度為3,
∵區(qū)間[0,4]上任意取一個數m,長度為4,
∴函數f(x)=$\frac{1}{3}$x3-x2+mx是R上的單調函數的概率是$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點評 本題主要考查幾何概型,考查利用導數研究函數的單調性,正確把握導數的正負與函數單調性之間的關系是關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

15.定積分${∫}_{0}^{\frac{\sqrt{2}}{2}}$($\sqrt{1-{x}^{2}}$-x)dx=$\frac{π}{8}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{π}{3}$,且$\overrightarrow{a}$=(-2,-6),|$\overrightarrow$|=$\sqrt{10}$,則$\overrightarrow{a}$•$\overrightarrow$=10.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知點P在拋物線y2=4x上,定點M(2,3),則點P到點M的距離和到直線l:x=-1的距離之和的最小值為( 。
A.$\frac{37}{16}$B.$\frac{11}{5}$C.$\sqrt{10}$D.3

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.若函數f(x)=x2+2x+2a與g(x)=|x-1|+|x+a|有相同的最小值,則不等式g(x)≥5的解集為(-∞,-3]∪[2,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.如圖所示,平面四邊形ABCD中,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,將其沿對角線BD折成四面體ABCD,使平面ABD⊥平面BCD,若四面體ABCD的頂點在同一個球面上,則該球的體積為(  )
A.$\frac{8\sqrt{2}}{3}$πB.24πC.4$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.若雙曲線$\frac{x^2}{2-k}+\frac{y^2}{k-1}$=1的焦點在x軸上,則實數k的取值范圍是( 。
A.(一∞,1)B.(2,+∞)C.(1,2)D.(一∞,1)U(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.已知a2+2b2=1,求a•b的最小值$-\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知△ABC的內角A滿足sin2A=$\frac{1}{3}$,則sinA+cosA=( 。
A.-$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{5}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

同步練習冊答案