【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).
(1)證明:在上單調(diào)遞增;
(2)函數(shù),如果總存在,對任意,都成立,求實數(shù)a的取值范圍.
【答案】(1)證明見解析;(2).
【解析】
(1)利用函數(shù)的單調(diào)性定義即可證出.
(2)根據(jù)解析式可知與均為上的偶函數(shù),由題意可知只需函數(shù)在上的最大值不小于的最大值,由(1)函數(shù)為單調(diào)遞增,即,解不等式即可.
(1)證明:任取,,且,
則
因為,,,所以,,,
所以,即當時,總有,
所以在上單調(diào)遞增.
(2)解:由,得是上的偶函數(shù),
同理,也是上的偶函數(shù).
總存在,對任意都有,
即函數(shù)在上的最大值不小于的最大值.
由(1)知在上單調(diào)遞增, 所以當時,,
所以.
令,則,令,易知在上遞增,
又,所以,即,
所以,即實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象上所有點的縱坐標伸長到原來的倍(橫坐標不變),再向左平移個單位長度,得到函數(shù)的圖象,設(shè)函數(shù).
(1)對函數(shù)的解析式;
(2)若對任意,不等式恒成立,求的最小值;
(3)若在內(nèi)有兩個不同的解,,求的值(用含的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)解不等式:
(2)是否存在實數(shù)t,使得不等式,對任意的及任意銳角都成立,若存在,求出t的取值范圍:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面是直角梯形,∥,,,,又平面,且,點在棱上且.
(1)求證:;
(2)求與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題,
①命題“若,則或”為真命題;
②命題“若,則”的否命題為真命題;
③若平面上不共線的三個點到平面距離相等,則
④若,是兩個不重合的平面,直線,命題,命題,則是的必要不充分條件;
⑤平面過正方體的三個頂點,且與底面的交線為,則∥;
其中,真命題的序號是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】出租車幾何學(xué)是由十九世紀的赫爾曼·閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣,直角坐標系內(nèi)任意兩點定義它們之間的一種“距離”:,請解決以下問題:
(1)求線段上一點到點的“距離”;
(2)定義:“圓”是所有到定點“距離”為定值的點組成的圖形,求“圓”上的所有點到點的“距離”均為的“圓”方程,并求該“圓”圍成的圖形的面積;
(3)若點到點的“距離”和點到點的“距離”相等,其中實數(shù)滿足,求所有滿足條件的點的軌跡的長之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(,N(為不同的兩點,直線l:,=,下列命題正確中正確命題的序號是_______
(1)若,則直線l與線段MN相交;
(2)若=-1,則直線l經(jīng)過線段MN的中點;
(3)存在,使點M在直線l上;
(4)存在,使過M、N的直線與直線l重合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機的普及,大學(xué)生迷戀手機的現(xiàn)象非常嚴重.為了調(diào)查雙休日大學(xué)生使用手機的時間,某機構(gòu)采用不記名方式隨機調(diào)查了使用手機時間不超過小時的名大學(xué)生,將人使用手機的時間分成組:,,,,分別加以統(tǒng)計,得到下表,根據(jù)數(shù)據(jù)完成下列問題:
使用時間/時 | |||||
大學(xué)生/人 |
(1)完成頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計大學(xué)生使用手機的平均時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com