已知集合A={a1,a2,a3,…,an},記和ai+aj(1≤i<j≤n)中所有不同值的個數(shù)為M(A).對于集合B={b1,b2,b3,…,bn},若實數(shù)b1,b2,b3,…,bn成等差數(shù)列,則M(B)=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:把 bi+bj (1≤i<j≤m,i,j∈N)的值列成圖表,嚴(yán)格利用題目給出的新定義,采用列舉法來進(jìn)行求解即可.
解答: 解:對于集合B={b1,b2,b3,…,bn},若實數(shù)b1,b2,b3,…,bn成等差數(shù)列,
則 bi+bj (1≤i<j≤m,i,j∈N)的值列成如下各列所示圖表:
b1+b2,b2+b3,b3+b4,…,bn-1+bn,
b1+b2,b2+b4,b3+b5,…,bn-2+bn
…,…,…,
b1+bn-2,b2+bn-1,b3+bn,
b1+bn-1,b2+bn,
b1+bn
∵數(shù)列{bn}是等差數(shù)列,
∴b1+b4=b2+b3,b1+b5=b2+b4,…,b1+bn=b2+bn-1
∴第二列中只有 b2+bn 的值和第一列不重復(fù),即第二列剩余一個不重復(fù)的值,
同理,以后每列剩余一個與前面不重復(fù)的值,
∵第一列共有n-1個不同的值,后面共有n-1列,
∴所有不同的值有:n-1+n-2=2n-3,故M(B)=2n-3,
故答案為2n-3.
點(diǎn)評:本題是新定義題,考查了等差數(shù)列的性質(zhì),準(zhǔn)確列出 bi+bj (1≤i<j≤m,i,j∈N)的值表是解決該題的關(guān)鍵,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-1|+2,g(x)=-|x+2|+3.,當(dāng)x∈R時,f(x)-g(x)≥m+2恒成立,實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a,b滿足
1
2
a+b=1
,則3a+9b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(m2+1)x-m2y+1=0的傾斜角的取值范圍為( 。
A、(
π
4
,π)
B、[
π
4
,π)
C、[
π
4
π
2
D、(
π
4
,
π
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z為虛數(shù),條件甲:z+
1
z
是實數(shù),條件乙:|z|=1,則( 。
A、甲是乙的必要非充分條件
B、甲是乙的充分非必要條件
C、甲是乙的充要條件
D、甲既不是乙的必要條件,也不是乙的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b、c分別是△ABC的三個內(nèi)角A、B、C所對的邊,若a=1,b=bc,則“A=30°”是“B=60°”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把110010(2)化為五進(jìn)制數(shù)的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若cosA•cosB-sinA•sinB>0,則這個三角形一定是( 。
A、銳角三角形
B、鈍角三角形
C、直角三角形
D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線
|x|
2
-
|y|
2
=1與直線y=2x+m有兩個交點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案