17.定義在R上的函數(shù)y=f(x)滿足:f(x)+f′(x)>1,f(0)=2017,則不等式exf(x)-ex>2016(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(2016,+∞)B.(-∞,0)∪(2016,+∞)C.(-∞,0)∪(0,+∞)D.(0,+∞)

分析 構(gòu)造函數(shù)g(x)=exf(x)-ex,(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.

解答 解:設(shè)g(x)=exf(x)-ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f'(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
∵exf(x)-ex>2016,
∴g(x)>2016,
又∵g(0)=e0f(0)-e0=2017-1=2016,
∴g(x)>g(0),
∴x>0,
∴不等式的解集為(0,+∞),
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)與單調(diào)性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax(a∈R).
(1)函數(shù)f(x)在[2,3]上單調(diào)遞減,求a的取值范圍;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=2+\frac{4}{x},g(x)={2^x}$.
(1)設(shè)函數(shù)h(x)=g(x)-f(x),求函數(shù)h(x)在區(qū)間[2,4]上的值域;
(2)定義min(p,q)表示p,q中較小者,設(shè)函數(shù)H(x)=min{f(x),g(x)}(x>0),
①求函數(shù)H(x)的單調(diào)區(qū)間及最值;
②若關(guān)于x的方程H(x)=k有兩個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={x|-1≤x<3,x∈R},N={-1,0,1,2,3},則M∩N=( 。
A.{-1,0,2,3}B.{-1,0,1,2}C.{0,1,2}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)A(0,-2),B(0,2),P是平面上一動(dòng)點(diǎn),且滿足$|{\overrightarrow{PB}}|•|{\overrightarrow{BA}}|=\overrightarrow{PA}•\overrightarrow{BA}$,設(shè)點(diǎn)P的軌跡是曲線C.
(1)求曲線C的方程;
(2)將直線AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)$θ(0<θ<\frac{π}{2})$得到AB',若AB'與曲線C恰好只有一個(gè)公共點(diǎn)D,求D點(diǎn)的坐標(biāo);
(3)過(2)中的D點(diǎn)作兩條不同的直線DE、DF分別交曲線C于E、F,且DE、DF的斜率k1、k2滿足k1•k2=3,求證:直線EF過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若${∫}_{0}^{a}$xdx=2,則常數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是( 。
A.y=3xB.y=x2C.y=lnxD.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某學(xué)校舉行的演講比賽有七位評(píng)委,如圖是評(píng)委們?yōu)槟尺x手給出分?jǐn)?shù)的莖葉圖,根據(jù)規(guī)則去掉一個(gè)最高分和一個(gè)最低分.則此所剩數(shù)據(jù)的平均數(shù)和方差分別為( 。
A.84,4.84B.84,1.6C.85,4D.85,1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)若該市有110萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說明理由;
(3)估計(jì)居民月均用水量的中位數(shù)(精確到0.01)

查看答案和解析>>

同步練習(xí)冊(cè)答案