已知{an}是等差數(shù)列,a1=3,Sn是其前n項(xiàng)和,在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求數(shù)列{an}, {bn}的通項(xiàng)公式;
(II)設(shè),數(shù)列{cn}的前n項(xiàng)和為Tn,求證

(Ⅰ),;(Ⅱ)詳見(jiàn)解析.

解析試題分析:(Ⅰ)已a(bǔ)1=3,b1=1,只需再求出公差d ,公比q,就可得它們的通項(xiàng)公式.又因?yàn)閎2+S2=10,
S5 =5b3+3a2.所以解這個(gè)方程組,便可得公差d 和公比q,從而可得通項(xiàng)公式.
(Ⅱ)由(Ⅰ)知,這樣可得,這是典型的用裂項(xiàng)法求和的數(shù)列,求出和然后用放縮法證明不等式.
試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,
由題意可得: 
解得q=2或q=(舍),d=2.
∴ 數(shù)列{an}的通項(xiàng)公式是,數(shù)列{bn}的通項(xiàng)公式是.       7分
(Ⅱ)由(Ⅰ)知,于是

<.                        12分
考點(diǎn):1、等差數(shù)列與等比數(shù)列;2、裂項(xiàng)法求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公比不為1的等比數(shù)列的前項(xiàng)和為,,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}滿足,.
(1)求證:數(shù)列為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)、,使、、成等差數(shù)列,且、 成等比數(shù)列?如果存在,求出所有符合條件的、、;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式及其前項(xiàng)和;
(Ⅱ)若數(shù)列滿足求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),數(shù)列滿足
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,).
(1)求的值;
(2)是否存在常數(shù),使得數(shù)列是一個(gè)等差數(shù)列?若存在,求的值及的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,若,
⑴證明數(shù)列為等差數(shù)列,并求其通項(xiàng)公式;
⑵令,①當(dāng)為何正整數(shù)值時(shí),:②若對(duì)一切正整數(shù),總有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是正數(shù)組成的數(shù)列,.若點(diǎn)在函數(shù)的導(dǎo)函數(shù)圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是否存在最小的正數(shù),使得對(duì)任意都有成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,且 (為常數(shù)),令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

同步練習(xí)冊(cè)答案