已知數(shù)列{an}滿足,.
(1)求證:數(shù)列為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)、,使、、成等差數(shù)列,且、 成等比數(shù)列?如果存在,求出所有符合條件的、、;如果不存在,請說明理由.

(1)詳見解析;(2)詳見解析

解析試題分析:(1)先利用倒數(shù)法得到,再結(jié)合待定系數(shù)法得到,從而證明數(shù)列為等比數(shù)列;(2)在(1)的條件下求出數(shù)列的通項公式,假設相應的正整數(shù)、滿足題中條件,并列出相應的等式組并進行化簡,利用基本不等式得出矛盾,從而說明符合題中條件的正整數(shù)不存在.
試題解析:(1)因為,所以. 所以.
因為,則.
所以數(shù)列是首項為,公比為的等比數(shù)列;
(2)由(1)知,,所以.
假設存在互不相等的正整數(shù)、、滿足條件,
則有,
,
.
.
因為,所以.
因為,當且僅當時等號成立,
這與、、互不相等矛盾.
所以不存在互不相等的正整數(shù)、滿足條件.
考點:1.倒數(shù)法求數(shù)列通項;2.待定系數(shù)法求數(shù)列通項;3.基本不等式

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前三項分別為,,(其中為正常數(shù))。設
(1)歸納出數(shù)列的通項公式,并證明數(shù)列不可能為等比數(shù)列;
(2)若=1,求的值;
(3)若=4,試證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

觀察下列三角形數(shù)表,假設第n行的第二個數(shù)為an(n≥2,n∈N*).

(1)依次寫出第六行的所有6個數(shù);
(2)歸納出an+1an的關系式并求出{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的通項.
(Ⅰ)求;
(Ⅱ)判斷數(shù)列的增減性,并說明理由;
(Ⅲ)設,求數(shù)列的最大項和最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線,過上一點作一斜率為的直線交曲線于另一點,點列的橫坐標構(gòu)成數(shù)列,其中.
(1)求的關系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和滿足,其中.
⑴若,求;
⑵若,求證:,并給出等號成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列的前項和為,滿足:.遞增的等比數(shù)列項和為,滿足:
(Ⅰ)求數(shù)列,的通項公式;
(Ⅱ)設數(shù)列,均有成立,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知{an}是等差數(shù)列,a1=3,Sn是其前n項和,在各項均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求數(shù)列{an}, {bn}的通項公式;
(II)設,數(shù)列{cn}的前n項和為Tn,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和,滿足:.
(Ⅰ)求數(shù)列的通項;
(Ⅱ)若數(shù)列的滿足,為數(shù)列的前項和,求證:.

查看答案和解析>>

同步練習冊答案