(本題滿分15分)已知數(shù)列{an}的前n項(xiàng)和為Sn,且anSn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上。

   (1)求a1a2的值;

   (2)求數(shù)列{an},{bn}的通項(xiàng)anbn;

   (3)設(shè)cn=an·bn,求數(shù)列{cn}的前n項(xiàng)和Tn

 

【答案】

(1)a2=4 (2)bn=2n-1,an=2n                                      

             (3)Tn=(2n-3)2n+1+6              

【解析】(1)∵anSn與2的等差中項(xiàng)

       ∴Sn=2an-2               ∴a1=S1=2a1-2,解得a1=2

         a1+a2=S2=2a2-2,解得a2=4                                                                           

   (2)∵Sn=2an-2,Sn-1=2an-1-2,

       又SnSn-1=an,

       ∴an=2an-2an-1,

       ∵an≠0,

       ∴,即數(shù)列{an}是等比數(shù)列∵a1=2,∴an=2n

       ∵點(diǎn)P(bn,bn+1)在直線x-y+2=0上,∴bn-bn+1+2=0,∴bn+1-bn=2,

即數(shù)列{bn}是等差數(shù)列,又b1=1,∴bn=2n-1

 

   (3)∵cn=(2n-1)2n

       ∴Tn=a1b1+ a2b2+····anbn=1×2+3×22+5×23+····+(2n-1)2n,

       ∴2Tn=1×22+3×23+····+(2n-3)2n+(2n-1)2n+1

       因此:-Tn=1×2+(2×22+2×23+···+2×2n)-(2n-1)2n+1,

       即:-Tn=1×2+(23+24+····+2n+1)-(2n-1)2n+1,

       ∴Tn=(2n-3)2n+1+6       

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿分15分)已知點(diǎn)(0,1),,直線、都是圓的切線(點(diǎn)不在軸上).
(Ⅰ)求過點(diǎn)且焦點(diǎn)在軸上的拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)(1,0)作直線與(Ⅰ)中的拋物線相交于兩點(diǎn),問是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線的斜率為1時(shí),求線段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線對(duì)稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿分15分)已知直線,曲線

   (1)若且直線與曲線恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線與曲線M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案