【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
()判斷函數(shù), 是否是有界函數(shù),請寫出詳細判斷過程.
()試證明:設(shè), ,若, 在上分別以, 為上界,求證:函數(shù)在上以為上界.
()若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如表
表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則9117用算籌可表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱ABCA1B1C1中,AB=2,AA1=3,
D為C1B的中點,P為AB邊上的動點.
(1)當點P為AB的中點時,證明DP∥平面ACC1A1;
(2)若AP=3PB,求三棱錐BCDP的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x | 2 | 8 | 9 | 11 | 5 |
y | 12 | 8 | 8 | 7 | 10 |
(1)求y關(guān)于x的回歸方程 ;
(2)判定y與x之間是正相關(guān)還是負相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業(yè)額. (附:回歸方程 中, = = , = ﹣ .)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,AF=AD=a,G是EF的中點.
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點P.
(1)點A(5,0)到直線l的距離為3,求直線l的方程;
(2)求點A(5,0)到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在二項式( + )n展開式中,前三項的系數(shù)成等差數(shù)列. 求:(1)展開式中各項系數(shù)和;
【答案】解:由題意得2 × =1+ × ,
化為:n2﹣9n+8=0,解得n=1(舍去)或8.
∴n=8.
在 中,令x=1,可得展開式中各項系數(shù)和= = .
(1)展開式中系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)復數(shù)z=2m+(4-m2)i,當實數(shù)m取何值時,復數(shù)z對應(yīng)的點:
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l過定點P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點.若線段AB的中點為P,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com