3.在△ABC中,若sinBsinC=cos2$\frac{A}{2}$,則下面等式一定成立的是(  )
A.A=BB.A=CC.B=CD.A=B=C

分析 利用倍角公式、兩角和差的余弦公式、余弦函數(shù)的單調(diào)性即可得出.

解答 解:在△ABC中,∵sinBsinC=cos2$\frac{A}{2}$=$\frac{cosA+1}{2}$,
∴2sinBsinC=-cosBcosC+sinBsinC+1,
∴cosBcosC+sinBsinC=cos(B-C)=1,
∵-π<B-C<π,
∴B-C=0,B=C.
故選:C.

點(diǎn)評(píng) 本題考查了倍角公式、兩角和差的余弦公式、余弦函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{lg|x-2|(x≠2)}\\{1,(x=2)}\end{array}}$,若關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解,則b+c=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知等邊三角形ABC的邊長(zhǎng)為1,沿BC邊上的高將它折成直二面角后,點(diǎn)A到BC的距離為(  )
A.$\frac{\sqrt{14}}{4}$B.$\frac{\sqrt{2}}{2}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.點(diǎn)P是直線l:x-y+4=0上一動(dòng)點(diǎn),PA與PB是圓C:(x-1)2+(y-1)2=4的兩條切線,則四邊形PACB的最小面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合A={x|$\frac{x-1}{x-3}$<0},B={x|y=lg(2x-3)},則A∩B=( 。
A.{x|-3<x<-$\frac{3}{2}$}B.{x|x>1}C.{x|x>3}D.{x|$\frac{3}{2}$<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.12B.20C.40D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=f(x)的圖象為C,C關(guān)于直線x=1對(duì)稱圖象為C1,將C1向左平移2個(gè)單位后得到圖象C2,則C2對(duì)應(yīng)的函數(shù)為( 。
A.y=f(-x)B.y=f(1-x)C.y=f(2-x)D.y=f(3-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=x0,g(x)=1B.f(x)=x,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=$\sqrt{{x}^{2}-1}$×$\sqrt{1-{x}^{2}}$,g(x)=0,(x∈{-1,1})D.f(x)=|x|,g(x)=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知全集U=R,集合A={x|y=lg(x-1)},集合B={y|y=$\sqrt{{x}^{2}+2x+5}$},則A∩B=[2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案