【題目】某某車站在春運期間為了改進服務,隨機抽樣調(diào)查了100名旅客從開始在購票窗口排隊到購到車票所用的時間t(以下簡稱購票用時,單位:min).下面是這次抽樣的頻率分布表和頻率分布直方圖,解答下列問題:

分組

頻數(shù)

頻率

一組

0≤t<5

0

0

二組

5≤t<10

10

三組

10≤t<15

10

0.10

四組

15≤t<20

五組

20≤t<25

30

0.30

合計

100

1.00

(1)這次抽樣的樣本容量是多少?

(2)在表中填寫缺失的數(shù)據(jù)并補全頻率分布直方圖.

(3)旅客購票用時的平均數(shù)可能落在哪一個小組?

(4)若每增加一個購票窗口可使平均購票用時縮短5 min,要使平均購票用時不超過10 min,那么你估計最少要增加幾個窗口?

【答案】11002)見解析(3442

【解析】試題分析:(1)由頻率分布直方表可知,這次抽樣的樣本容量;

(2)根據(jù)頻率分布直方表中的數(shù)據(jù),即可填寫缺失的數(shù)據(jù),并且補全頻率分布直方圖;

3設旅客平均購票時間為,根據(jù)頻率分布直方表,列出不等式,即可判定該旅客購票用時的平均數(shù)的大致位置;

4設需增加個窗口,可求得,即可判定至少需要增加個窗口.

試題解析:

(1)100

(2)

分組

頻數(shù)

頻率

一組

0≤t<5

0

0

二組

5≤t<10

10

0.10

三組

10≤t<15

10

0.10

四組

15≤t<20

50

0.50

五組

20≤t<25

30

0.30

合計

100

1.00

(3)設旅客平均購票時間為s min,則有

s<,

解得15≤s<20,

故旅客購票用時平均數(shù)可能落在第四小組.

(4)設需增加x個窗口,則20-5x≤10,解得x≥2,故至少需要增加2個窗口.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4

(1)求橢圓C的方程;
(2)過右焦點F的直線l,交橢圓于A、B兩點,記△AOF的面積為S1 , △BOF的面積為S2 , 當S1=2S2時,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

() 1是關于x的方程的一個解,求t的值;

() 時,解不等式;

()若函數(shù)在區(qū)間(-1,2]上有零點,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A,B,C三點滿足。

(1)求證:A,B,C三點共線;

(2)若A(1,cosx),B1+sinx,cosx),且x∈[0, ],函數(shù)f(x)=2m+||+m2的最小值為5,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了了解一年內(nèi)的用水情況,抽取了10天的用水量如下表所示:

天數(shù)

1

1

1

2

2

1

2

用水量/噸

22

38

40

41

44

50

95

(Ⅰ)在這10天中,該公司用水量的平均數(shù)是多少?每天用水量的中位數(shù)是多少?

(Ⅱ)你認為應該用平均數(shù)和中位數(shù)中的哪一個數(shù)來描述該公司每天的用水量?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于命題P:存在一個常數(shù)M,使得不等式 對任意正數(shù)a,b恒成立.
(1)試給出這個常數(shù)M的值;
(2)在(1)所得結(jié)論的條件下證明命題P;
(3)對于上述命題,某同學正確地猜想了命題Q:“存在一個常數(shù)M,使得不等式 對任意正數(shù)a,b,c恒成立.”觀察命題P與命題Q的規(guī)律,請猜想與正數(shù)a,b,c,d相關的命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下命題正確的個數(shù)為( ) ①存在無數(shù)個α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;
②在△ABC中,“A> ”是“sinA> ”的充要條件;
③命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題;
④命題“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2y22x4y40,

1)求圓C關于直線對稱的圓的方程;

2)問是否存在斜率為1的直線l,使l被圓C截得弦AB,且以AB為直徑的圓經(jīng)過點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖是正方體的平面展開圖,在這個正方體中:① 平行;② 是異面直線;③ 角;④ 垂直;以上四個命題中,正確的是( )

A.①②③
B.②④
C.②③④
D.③④

查看答案和解析>>

同步練習冊答案