17.若不等式組滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x+y的最大值為6.

分析 根據(jù)已知的約束條件 畫出滿足約束條件的可行域,再用目標函數(shù)的幾何意義,求出目標函數(shù)的最值,即可求解比值.

解答 解:約束條件 對應(yīng)的平面區(qū)域如下圖示:
由z=2x+y可得y=-2x+z,則z表示直線z=2x+y在y軸上的截距,截距越大,z越大,
由$\left\{\begin{array}{l}{x+y-4=0}\\{x-2y+2=0}\end{array}\right.$可得A(2,2),
當直線z=2x+y過A(2,2)時,Z取得最大值6,
故答案為:6.

點評 本題考查的知識點是線性規(guī)劃,畫不等式組表示的可行域,數(shù)形結(jié)合求目標函數(shù)的最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.若不等式[y2+(2x-5)y-x2]•(lnx-lny)≤0對任意的y∈(0,+∞)恒成立,則實數(shù)x的取值集合為{$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在等差數(shù)列{an}中,已知a4=4,a8=-4,則a12=-12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}滿足a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),則a1•a2•a3…a2017=(  )
A.-6B.6C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若z∈C,i為虛數(shù)單位,且$\frac{z}{{|z{|^2}}}=\frac{3}{5}-\frac{4}{5}i$,則復(fù)數(shù)z等于(  )
A.$\frac{3}{5}+\frac{4}{5}i$B.$\frac{3}{5}-\frac{4}{5}i$C.$\frac{5}{3}-\frac{5}{4}i$D.$\frac{4}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,PA⊥平面ABCD,矩形ABCD的邊長AB=1,BC=2,E為BC的中點.
(1)證明:PE⊥DE;
(2)已知PE=$\sqrt{6}$,求A到平面PED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知向量$\overrightarrow m=(1,2)$,$\overrightarrow n=(2,3)$,則$\overrightarrow m$在$\overrightarrow n$方向上的投影為(  )
A.$\sqrt{13}$B.8C.$\frac{{8\sqrt{5}}}{5}$D.$\frac{{8\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在三棱拄ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,∠BCC1=$\frac{π}{3}$,AB=CC1=2.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)若點E在棱CC1上(不包含端點C,C1),且EA⊥EB1,求直線AE和平面ABC1所成角正弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{2x}{x+1}$
(1)用定義證明:f(x)在[0,1]上是增函數(shù)
(2)若2<x<6時,求f(x)的值域.

查看答案和解析>>

同步練習冊答案