8.在等差數(shù)列{an}中,已知a4=4,a8=-4,則a12=-12.

分析 利用等差數(shù)列{an}的性質(zhì)可得:2a8=a4+a12,即可得出.

解答 解:由等差數(shù)列{an}的性質(zhì)可得:2a8=a4+a12,
又a4=4,a8=-4,∴a12=2×(-4)-4=-12.
故答案為:-12.

點(diǎn)評 本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow a=({2sinθ,1})$,$\overrightarrow b=({2cosθ,-1})$,其中$θ∈({0,\frac{π}{2}})$.
(1)若$\overrightarrow a⊥\overrightarrow b$,求角θ的大;
(2)若$|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow b}|$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{z}{2-3i}$對應(yīng)于復(fù)平面內(nèi)一點(diǎn)(0,1),則|z|=(  )
A.$\sqrt{13}$B.4C.5D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)滿足(z-1)(2-i)=5i,其中是虛數(shù)單位,則|z|的值為( 。
A.2B.$\sqrt{5}$C.$\frac{{\sqrt{170}}}{3}$D.$\frac{{\sqrt{149}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,長方體ABCD-A1B1C1D1中,O是BD的中點(diǎn),AA1=2AB=2BC=4.
(1)求證:C1O∥平面AB1D1
(2)點(diǎn)E在側(cè)棱AA1上,求四棱錐E-BB1D1D的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=(x-1)2,(x≤0)的反函數(shù)是f-1(x)=-$\sqrt{x}$+1,(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=ax3+bx,若f(a)=8,則f(-a)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若不等式組滿足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-2y+2≤0}\\{x+y-4≤0}\end{array}\right.$,則z=2x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過動點(diǎn)P作圓:(x-3)2+(y-4)2=1的切線PQ,其中Q為切點(diǎn),若|PQ|=|PO|(O為坐標(biāo)原點(diǎn)),則|PQ|的最小值是$\frac{12}{5}$.

查看答案和解析>>

同步練習(xí)冊答案