山東省某示范性高中為了推進新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學(xué)科講座各天的滿座概率如下表:

 
信息技術(shù)
生物
化學(xué)
物理
數(shù)學(xué)
周一





周三





周五





 (Ⅰ)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
 (Ⅱ)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨即變量的分布列和數(shù)學(xué)期望.

(1);
(2)分布列為


0
1
2
3
4
5
P






=。

解析試題分析:(1)設(shè)數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座為事件A,則
      -3分
(2)可能取值為0,1,2,3,4,5
,.
.
.
..
分布列為


0
1
2
3
4
5
P






=-----------12分
考點:隨機變量的分布列及數(shù)學(xué)期望
點評:中檔題,本題較為典型,背景貼近學(xué)生,是隨機變量的分布列及數(shù)學(xué)期望問題的常見題型,解題的關(guān)鍵是理解概率的計算方法。本題對計算能力要求較高。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
P(K2>k)
0.05
0.025
0.010
0.005
k
3.841
5.024
6.635
7.879
下面的臨界值表供參考:
(參考公式:K2=,其中n="a+b+c+d)"

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某果園要用三輛汽車將一批水果從所在城市E運至銷售城市F,已知從城市E到城市F有兩條公路.統(tǒng)計表明:汽車走公路Ⅰ堵車的概率為,不堵車的概率為;走公路Ⅱ堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路Ⅰ,第三輛汽車丙由于其他原因走公路Ⅱ運送水果,且三輛汽車是否堵車相互之間沒有影響.
(1)求甲、乙兩輛汽車中恰有一輛堵車的概率;
(2)求三輛汽車中至少有兩輛堵車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中有12個小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率是,試求得到黑球、黃球、綠球的概率各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了考察某種中藥預(yù)防流感效果,抽樣調(diào)查40人,得到如下數(shù)據(jù):服用中藥的有20人,其中患流感的有2人,而未服用中藥的20人中,患流感的有8人。
(1)根據(jù)以上數(shù)據(jù)建立列聯(lián)表;
(2)能否在犯錯誤不超過0.05的前提下認為該藥物有效?
參考


0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
  (

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的6個頂點,在頂點取自A,B,C,D,E,F(xiàn)的所有三角形中,隨機(等可能)取一個三角形.設(shè)隨機變量X為取出三角形的面積.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求數(shù)學(xué)期望E ( X ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2012年10月莫言獲得諾貝爾文學(xué)獎后,其家鄉(xiāng)山東高密政府準備投資6.7億元打造旅游帶,包括莫言舊居周圍的莫言文化體驗區(qū),紅高粱文化休閑區(qū),愛國主義教育基地等;為此某文化旅游公司向社會公開征集旅游帶建設(shè)方案,在收到的方案中甲、乙、丙三個方案引起了專家評委的注意,現(xiàn)已知甲、乙、丙三個方案能被選中的概率分別為,且假設(shè)各自能否被選中是無關(guān)的.
(1)求甲、乙、丙三個方案只有兩個被選中的概率;
(2)記甲、乙、丙三個方案被選中的個數(shù)為,試求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對其中每道題的概率都是,乙能答對其中的道題.規(guī)定每次考試都從備選的道題中隨機抽出道題進行測試,答對一題加分,答錯一題(不答視為答錯)減分,至少得分才能入選.
(1)求甲得分的數(shù)學(xué)期望;
(2)求甲、乙兩人同時入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量 
(Ⅰ)若,求向量的概率;
(Ⅱ)若用計算機產(chǎn)生的隨機二元數(shù)組構(gòu)成區(qū)域,求二元數(shù)組滿足1的概率.

查看答案和解析>>

同步練習(xí)冊答案